Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A system and method for constructing an interference component using a detected data symbol and an estimated channel response in a non-orthogonal system and a method of estimating a channel using a structure of the non-orthogonal system and the interference component is disclosed. The system includes a receiver that receives a reference signal and data transmitted from a transmitter; detects adjacent data symbols around the reference signal; estimating an initial channel state; constructs the interference signal on the basis of the adjacent data symbols and the initial channel state; estimates the channel state on the basis of the constructed interference signal; and performing an iterative process of reconstructing the interference signal on the basis of the estimated channel state and re-estimates the channel state on the basis of the reconstructed interference signal.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method of a reception device in a wireless environment according to various embodiments of the present disclosure may include receiving a signal from a transmission device, identifying that the received signal is modulated based on at least one designated modulation scheme of modulation schemes, based on identifying, generating second values by applying a first circular shift of a first direction to first values relating to first symbols of the signal, and generating third values by applying a second circular shift of a second direction which is different from the first direction, to complex conjugate values of the first values, generating second symbols of the signal based at least in part on the second values and the third values, and obtaining data about the signal based at least in part on the second symbols.
Abstract:
The disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). Provided are an apparatus and a method for determining a bandwidth in a wireless communication system. A method of operating a base station (BS) in a wireless communication system includes: receiving information on a bandwidth supporting capability of a terminal from the terminal; transmitting information on at least one candidate bandwidth corresponding to the bandwidth supporting capability to the terminal; and transmitting information indicating a utilization bandwidth of the terminal among the at least one candidate bandwidth to the terminal. Accordingly, it is possible to reduce power consumption of the terminal and overhead for a bandwidth indication.
Abstract:
Disclosed is a 5G (5th generation) or pre-5G communication system for supporting a data transmission rate higher than that of a 4G (4th generation) communication system such as a long term evolution (LTE). The present disclosure is for allocating and indicating resources in a wireless communication system, and an operation method of a base station comprises the steps of: allocating a first resource for a first service; allocating a second resource for a second service in consideration of the first resource; and transmitting resource allocation information on the second resource and data of the second service, wherein the second resource is discontinuously allocated, at a frequency axis, in a logical or physical manner, and the resource allocation information indicates the second resource by using at least one starting location and at least one length.
Abstract:
A 5th generation (5G) or pre-5G communication system supporting higher data rate after a 4th generation (4G) communication system such as a long-term evolution (LTE) is disclosed. The system includes a scalable frame structure to integrally support various services in a cellular wireless communication system, and provides a transmission/reception method to which the corresponding frame structure is applied, so that the system performance is improved through minimizing of inter-symbol interference between the 5G system and the LTE system or between the 5G systems. The scalable frame structure adjusts a cyclic prefix (CP) length by giving a specific pattern thereto when subcarrier spacing is extended, while maintaining a CP overhead in the same manner based on the frame structure based on a specific subcarrier spacing, thereby maintaining the 2m-times relationship between a symbol length, CP length, slot length, and subframe length.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). Disclosed is a method for operating a BS for supporting mixed numerology in a wireless communication system. The method includes: generating a first signal for a first group and a second signal for a second group according to different configurations; and transmitting the first signal through a first channel allocated for the first group and the second signal through a second channel allocated for the second group.
Abstract:
Provided are a method and apparatus for radio resource allocation. The radio resource allocation method for a base station may include: obtaining at least one of beamforming structure information and frame structure information; generating resource allocation information for a CSI-RS (channel state information reference signal) on the basis of at least one of the beamforming structure information and the frame structure information; and transmitting the resource allocation information. As a result, it is possible to efficiently perform resource allocation.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transfer rate than a 4G communication system such as LTE. The present invention relates to channel estimation and equalization in a cellular environment on the basis of an FBMC transmission and reception technique. A communication method of a base station according to one embodiment of the present invention may comprise the steps of: determining a reference signal (RS) pattern building block of a plurality of cells according to filter information of the plurality of cells; determining an RS pattern of the plurality of cells by using the determined RS pattern building block and the size of a resource block (RB); and transmitting, to a terminal, information about the determined RS pattern. According to one embodiment of the present invention, it is possible to provide a method and an apparatus for mapping a reference signal in a multi-cell environment.