Abstract:
An untethered apparatus for measuring properties along a subterranean well. According to at least one embodiment, the untethered apparatus includes a housing, and one or more sensors configured to measure data along the subterranean well. The data includes one or more physical, chemical, geological or structural properties in the subterranean well. The untethered apparatus further includes a processor configured to control the one or more sensors measuring the data and to store the measured data, and a transmitter configured to transmit the measured data to a receiver arranged external to the subterranean well. Further, the untethered apparatus includes a controller configured to control the buoyancy or the drag of the untethered apparatus to control a position of the untethered apparatus in the subterranean well. The processor includes instructions defining measurement parameters for the one or more sensors of the untethered apparatus within the subterranean well.
Abstract:
Untethered, downhole robots are described. In some cases, the downhole robots are configured to have a density within + or −20% of wellbore fluid in which it will be operating. In some cases, the downhole robots a controller capable of discerning deviation of the wellbore from vertical and, in response, control a buoyancy system to change longitudinal distribution of the weight of the robot, wherein the magnitude of the change in the longitudinal distribution of the weight suffices to reorient the robot.
Abstract:
Embodiments of the invention provide an untethered apparatus for measuring properties along a subterranean well. According to at least one embodiment, the untethered apparatus includes a housing, and one or more sensors configured to measure data along the subterranean well. The data includes one or more physical, chemical, geological or structural properties in the subterranean well. The untethered apparatus further includes a processor configured to control the one or more sensors measuring the data and to store the measured data, and a transmitter configured to transmit the measured data to a receiver arranged external to the subterranean well. Further, the untethered apparatus includes a controller configured to control the buoyancy or the drag of the untethered apparatus to control a position of the untethered apparatus in the subterranean well. The processor includes instructions defining measurement parameters for the one or more sensors of the untethered apparatus within the subterranean well.
Abstract:
Techniques for determining rheological properties of a fluid include actuating a resonator disposed in a volume that contains a fluid sample to operate the resonator in the fluid sample at a predetermined actuation scheme; measuring at least one characteristic of the resonator based on the operation of the resonator in the fluid sample; comparing the at least one measured characteristic to a rheological model that associates characteristics of the fluid sample to one or more rheological properties; and based on the comparison, determining one or more rheological properties of the fluid sample.
Abstract:
Systems and methods for measuring phase flow rates of a multiphase production fluid are provided where a fluidic isolation chamber expands volumetrically in response to fluid pressure from a diverted multiphase production fluid. A pressure-regulating actuator regulates fluid pressure upstream of the fluidic isolation chamber and an upstream fluidic pressure sensor generates an upstream fluidic pressure signal. A fluidic control and analysis unit is configured to communicate with the upstream pressure sensor and the isolation chamber actuator to maintain fluidic pressure upstream of the fluidic isolation chamber as the multiphase production fluid is diverted to the fluidic isolation chamber. The unit generates a total flow rate QTOT as a function of chamber filling time and volumetric expansion and communicates with the fluidic phase detector to generate a relative occupancy indicator I for a target phase of the multiphase production fluid in the fluidic isolation chamber. A flow rate QP for the target phase is generated as a function of the total flow rate QTOT and the relative occupancy indicator I.
Abstract:
Techniques for determining rheological properties of a fluid include actuating a resonator disposed in a volume that contains a fluid sample to operate the resonator in the fluid sample at a predetermined actuation scheme; measuring at least one characteristic of the resonator based on the operation of the resonator in the fluid sample; comparing the at least one measured characteristic to a rheological model that associates characteristics of the fluid sample to one or more rheological properties; and based on the comparison, determining one or more rheological properties of the fluid sample.
Abstract:
A method and device are described for making in situ measurements of the density and viscosity of downhole fluids at subterranean wells. An oscillator circuit is deployed in the well comprising an amplifier, a feedback loop, and an electromechanical resonator. The electromechanical resonator is a component in the feedback loop of the oscillator circuit, and has a resonance mode that determines the frequency of the oscillator circuit. The electromechanical resonator is also in contact with the fluid such that the density and viscosity of the fluid influence the resonant frequency and damping of the resonator. The frequency of the oscillator is measured by a microcontroller. In one embodiment, the oscillator circuit periodically stops driving the electromechanical resonator such that the oscillation decays and the rate of decay is also measured by the microcontroller. The density and viscosity of the fluid are determined from the frequency and rate of decay of the oscillation. This measurement technique provides a faster response time to fluid changes than is possible with conventional measurement methods, and the fast response time opens up new applications for downhole viscosity and density measurements, including determining PVT characteristics, phase diagrams, and flow rates.
Abstract:
The present device and technique relates to measuring geological formation permeability, such as by injection/withdrawal of conductivity-permeability doped fluid and measuring the magnetic permeability and/or conductivity of the surrounding formation. Before, during and/or after injection or withdrawal, pluralities of electromagnetic measurements of the radial distribution of magnetic permeability and/or conductivity of the surrounding formation may be made. The rate of change of the radial distribution of magnetic permeability and/or conductivity of the formation is generally directly proportional to the permeability of the surrounding formation. In implementations, magnetic permeability and electrical conductivity can be measured independently in time domain or frequency domain, such that the magnetic permeability mapping is not disturbed by other confounding electromagnetic parameters.
Abstract:
A method and device are described for making in situ measurements of the density and viscosity of downhole fluids at subterranean wells. An oscillator circuit is deployed in the well comprising an amplifier, a feedback loop, and an electromechanical resonator. The electromechanical resonator is a component in the feedback loop of the oscillator circuit, and has a resonance mode that determines the frequency of the oscillator circuit. The electromechanical resonator is also in contact with the fluid such that the density and viscosity of the fluid influence the resonant frequency and damping of the resonator. The frequency of the oscillator is measured by a microcontroller. In one embodiment, the oscillator circuit periodically stops driving the electromechanical resonator such that the oscillation decays and the rate of decay is also measured by the microcontroller. The density and viscosity of the fluid are determined from the frequency and rate of decay of the oscillation. This measurement technique provides a faster response time to fluid changes than is possible with conventional measurement methods, and the fast response time opens up new applications for downhole viscosity and density measurements, including determining PVT characteristics, phase diagrams, and flow rates.
Abstract:
In one implementation, a downhole robot includes a housing, electrically-powered equipment configured to perform operations of the downhole robot, a power source disposed inside the housing, the power source coupled by a current flow path to provide electrical current to power to the electrically-powered equipment, and a resettable latch disposed inside the housing. The resettable latch is configured to either interrupt flow of electrical along the current flow path or allow current to flow along the current flow path in response to a signal that wirelessly penetrates the housing.