Abstract:
A hydraulic fracturing fluid and methods for using the hydraulic fracturing fluid fracturing a formation are provided. An exemplary hydraulic fracturing fluid includes a polymer additive, a breaker, a non-ionic surfactant. The hydraulic fracturing fluid also includes an amphoteric surfactant, or a cationic surfactant, or both, and a base fluid.
Abstract:
A composition includes an ionic liquid monomer having the following structure:
where n is an integer from 1 to 5 and the ionic liquid monomer has a melting point less than 100° C. A method of making the ionic liquid includes providing a mixture comprising a sulfonic acid and a diamine in a solvent, and maintaining the mixture at a temperature ranging from 10 to 80° C. for a time ranging from 1 to 10 hours to form an ionic liquid monomer having a melting point less than 100° C. A method of making a polymer from the ionic liquid monomer is also provided.
Abstract:
A method to improve the efficiency of a gravity drainage CO2 gas injection process includes the steps of: (a) injecting a slug proximate to an underground reservoir, wherein the slug comprises a polymer component and an inorganic metal ion type crosslinking agent that are configured to form an in situ weak gel in the reservoir to block high permeability channels in a pay zone of the reservoir; and (b) continuously injecting CO2 gas at a top of the pay zone to form a gas cap at the top of the reservoir and to cause the gas cap to advance rapidly towards a producing well located below to provide a uniform sweep of the gas cap.
Abstract:
Provided is a quaternary ammonium surfmer, that may have the following general formula (I): N+—R1R2R3R4 (X−), where: R1 and R2 may independently be H or a C1-C3 alkyl, R3 may be a C19+ amidoalkyl group, R4 may be a C3-C6 alkyl having a terminal olefin double bond group, and X may be a halogen. Further provided is a method for synthesizing the quaternary ammonium surfmer and a method for recovering hydrocarbons from a subterranean formation that may include injecting a treatment fluid comprising the quaternary ammonium surfmer into the subterranean formation.
Abstract:
Compositions that include cationic surfactants and methods of synthesizing compositions that include cationic surfactants. The surfactants include a quaternary amine and a saturated or unsaturated alkyl chain with 4 to 28 carbons. The surfactants can be generated by reacting a fatty acid modified with an amino alkyl group and an epihalohydrin in the presence of a base. The cationic surfactants can be generated by reacting a fatty acid modified with an amino alkyl group, an epihalohydrin, and a carboxylic acid. The cationic surfactants can be generated by reacting a carboxylic acid, an epihalohydrin, and a catalyst to afford a halo-substituted alkyl ester, followed by reacting the halo-substituted alky ester with a fatty acid modified with an amino alkyl group.
Abstract:
Copolymer compositions and methods of making copolymer compositions with enhanced stability in high temperature and high salinity environments. The copolymers include hydrophobic monomers and sulfonated monomers. The sulfonated monomers can include 2-acrylamido-2-methylpropane sulfonic acid and allyl sulfonate. The sulfonated monomers increase the stability of the polymers in harsh conditions, and in high temperature, high salinity environments. The sulfonated monomers also reduce or prevent the hydrolysis of acrylamide groups, and therefore enhance the stability of the copolymer. The copolymer compositions can be made with free radical polymerization and an initiation complex.
Abstract:
Compositions that include cationic surfactants and methods of synthesizing compositions that include cationic surfactants. The surfactants include a quaternary amine and a saturated or unsaturated alkyl chain with 4 to 28 carbons. The surfactants can be generated by reacting a fatty acid modified with an amino alkyl group and an epihalohydrin in the presence of a base. The cationic surfactants can be generated by reacting a fatty acid modified with an amino alkyl group, an epihalohydrin, and a carboxylic acid. The cationic surfactants can be generated by reacting a carboxylic acid, an epihalohydrin, and a catalyst to afford a halo-substituted alkyl ester, followed by reacting the halo-substituted alky ester with a fatty acid modified with an amino alkyl group.
Abstract:
The present invention relates to a method for determining trace amounts of crude oil in water, including the steps of collecting a sample of an oil-containing fluid, adding a toluene extraction volume to the sample, perturbing the sample, dissolving substantially all of the amount of oil in the toluene extraction volume to create a mixed sample, extracting the mixed sample to create an oil-in-toluene layer and an aqueous fluid layer, removing a portion of the oil-in-toluene layer into a dilution container, diluting the portion of the oil-in-toluene layer with a toluene dilution volume to create a dilute sample, measuring an absorption value of the dilute sample using a spectrophotometer, and comparing the absorption value to a calibration curve to quantify the amount of oil in the oil-containing fluid.
Abstract:
This disclosure relates to thermal stimuli-responsive surfactant mixtures useful for reducing water/oil interfacial tension at high temperatures and increasing water/oil interfacial tension at low temperatures. The disclosure also relates to methods of using the surfactant mixtures for enhanced oil recovery applications.
Abstract:
This disclosure relates to thermal stimuli-responsive surfactant mixtures useful for reducing water/oil interfacial tension at high temperatures and increasing water/oil interfacial tension at low temperatures. The disclosure also relates to methods of using the surfactant mixtures for enhanced oil recovery applications.