Abstract:
A method for evaluating a formation includes determining a number of detected gamma rays resulting from imparting neutrons into a formation. The detected gamma rays are each characterized by an energy level thereof The gamma rays are detected at a first distance from a position of imparting the neutrons into the formation. Those of the detected gamma rays attributable to neutron capture by hydrogen nuclei are removed from the number of detected gamma rays. The number of detected gamma rays having hydrogen neutron capture gamma rays removed therefrom are used to calculate a property of the formation.
Abstract:
A method for determining hydrogen index includes using measurements of gamma rays detected during operation of a pulsed neutron source and numbers of thermal neutron capture gamma rays made at at least two different axial spacings from a pulsed neutron source. Either a first ratio of or a first logarithm of the first ratio of the burst gamma rays is determined for a first and second axial distance from the neutron source. A second logarithm is determined of a second ratio of the thermal neutron capture gamma rays detected at a first axial spacing with respect to the numbers detected at a second axial spacing. A corrected second ratio of the numbers of thermal neutron capture gamma rays is determined using either (i) the first logarithm and (ii) the first ratio, and the second logarithm. The corrected second ratio is used to determine the hydrogen index.
Abstract:
A method for well logging includes emitting a plurality of bursts of high energy neutrons into a wellbore and formations surrounding the wellbore. During and for a selected duration after at least one of the plurality of bursts, gamma rays are detected at at least one location spaced apart from the emitting and characterizing an energy of the detected gamma rays. After the last burst, gamma rays are detected and energy spectrum and rates of detection with respect to time thereof are determined. The foregoing is repeated for a selected number of times. After the selected number of times background gamma rays are measured. At least one of the numbers of detected gamma rays during a selected time interval and an energy spectrum of the detected gamma rays during the selected time interval is used to determine selected formation properties.
Abstract:
A method for determining a petrophysical property of a formation includes detecting radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 MeV. The petrophysical property is determined from an elastic scattering cross section of the formation. The elastic scattering cross-section related to a number of detected radiation events.
Abstract:
A method for determining thermal neutron decay constant for a formation includes counting radiation events corresponding to numbers of thermal neutrons with respect to time (decay spectrum) after irradiating the formation with neutrons. At least one moment of a first order of the decay spectrum or a single exponential curve to fit the decay spectrum is determined. A first apparent decay constant from the at least one moment or the single exponential curve. A second apparent decay constant is determined either by repeating the calculating a moment or exponential curve for different time segments of the decay spectrum or by using radiation events detected by at least a second radiation detector at a different spacing from a position of the irradiating than the at least a first radiation detector to determine a second apparent decay constant. A wellbore corrected thermal neutron decay constant is determined from the first and second apparent decay constants.
Abstract:
A method for well logging includes emitting a plurality of bursts of high energy neutrons into a wellbore and formations surrounding the wellbore. During and for a selected duration after at least one of the plurality of bursts, gamma rays are detected at at least one location spaced apart from the emitting and characterizing an energy of the detected gamma rays. After the last burst, gamma rays are detected and energy spectrum and rates of detection with respect to time thereof are determined. The foregoing is repeated for a selected number of times. After the selected number of times background gamma rays are measured. At least one of the numbers of detected gamma rays during a selected time interval and an energy spectrum of the detected gamma rays during the selected time interval is used to determine selected formation properties.
Abstract:
A method for characterizing wellbore response of a pulsed neutron instrument includes inserting a pulsed neutron instrument into a plurality of simulated wellbores each filled with materials representing gas and liquid and measuring response of the pulsed neutron instrument in the simulated wellbores.
Abstract:
A presence of cement may be identified based on a downhole tool that may emit neutrons into a wellbore having at least one cement casing. The neutrons may interact with the particular material via inelastic scattering, inelastic neutron reactions, capture of neutrons and/or neutron activation through one of these reactions and cause a material to emit an energy spectrum of gamma rays, and wherein the downhole tool is configured to detect an energy spectrum of the gamma rays that is specific to at least one of a plurality of elements and associated a region within the wellbore. An amount of elements, such as calcium and silicon, may be determined from the gamma ray spectra that may indicate a present of cement within the wellbore.
Abstract:
A method for determining a fractional volume of at least one component of a formation includes entering into a computer a number of detected radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 million electron volts (MeV). The detected radiation events correspond to at least one of an energy level of the imparted neutrons and thermal or epithermal energy neutrons. A measurement of at least one additional petrophysical parameter of the formation is made. The at least one additional petrophysical parameter measurement and at least one of a fast neutron cross-section and a thermal neutron cross-section determined from the detected radiation events are used in the computer to determine the fractional volume of the at least one component of the formation. In another embodiment, the fast neutron cross-section and the thermal neutron cross-section may be used on combination to determine the fractional volume.
Abstract:
A method for determining a fractional volume of at least one component of a formation includes entering into a computer a number of detected radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 million electron volts (MeV). The detected radiation events correspond to at least one of an energy level of the imparted neutrons and thermal or epithermal energy neutrons. A measurement of at least one additional petrophysical parameter of the formation is made. The at least one additional petrophysical parameter measurement and at least one of a fast neutron cross-section and a thermal neutron cross-section determined from the detected radiation events are used in the computer to determine the fractional volume of the at least one component of the formation. In another embodiment, the fast neutron cross-section and the thermal neutron cross-section may be used on combination to determine the fractional volume.