Abstract:
Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
Abstract:
Apparatuses, systems, and methods for guiding and/or positioning a plurality of seismic nodes on or near the seabed by an autonomous underwater vehicle (AUV) or a remotely operated vehicle (ROV). In one embodiment, an underwater vehicle is configured to monitor the deployment of cable connected to a plurality of seismic nodes, including the touchdown monitoring, positioning, and guiding of deployed autonomous seismic nodes or ocean bottom cable. The underwater vehicle may comprise a propulsion system configured to steer and propel the vehicle in a body of water, a tracking system configured to automatically track the cable and/or attached seismic nodes, and a guidance system configured to communicate with a surface vessel node data in real time or near real time for active guidance and/or positioning of the deployment cable.
Abstract:
Embodiments, including apparatuses, systems and methods, for automatically attaching and detaching seismic devices to a deployment cable, including a plurality of autonomous seismic nodes. A node installation system may include a moveable node carrier coupled to a cable detection device and a node attachment device that is configured to move a direct attachment mechanism on a node into a locking or closed position about the deployment cable. In an embodiment for retrieval and/or detachment operations, the system may also be configured to automatically detect the position of a node and remove the node from the deployment line by actuating the direct attachment mechanism into an open or unlocked position. Other devices besides a node may be attached and detached from the deployment line if they are coupled to one or more direct attachment mechanisms.
Abstract:
Apparatuses, systems, and methods for wireless data transfer on an autonomous seismic node are described. In an embodiment, an autonomous seismic node configured for wireless data transfer includes one or more power sources, one or more seismic sensors, one or more recording devices, and a wireless system. In one embodiment, the wireless system comprises a node electronics interface in data communication with one or more of the power sources, seismic sensors, and recording devices, and a wireless data communication interface for communication with an external data handling system. A communication system may include one or more vessel-based wireless systems configured to communicate with one or more node based wireless systems.
Abstract:
Apparatuses, systems, and methods for the deployment of a plurality of seismic autonomous underwater vehicles (AUVs) on or near the seabed. In one embodiment, the AUV comprises a buoyant body coupled to a pressure vessel that contains substantially all of the AUV's electronic components. The pressure vessel may comprise a plurality of composite components coupled together by a metallic ring to provide a substantially cylindrical shape to the pressure vessel. The AUV body provides lift to the AUV during lateral movement and compensates for an overall negative buoyancy of the AUV. The AUV may include a plurality of thrusters for propulsion. A vertical thruster may be used to create an upwards attack angle during takeoff and to maintain depth and orientation during flight. During normal flight operations, the AUV is configured to travel horizontally and vertically in a body of water by using only the horizontal thrusters.
Abstract:
Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
Abstract:
Apparatuses, systems, and methods for monitoring, positioning, and/or guiding a plurality of seismic nodes on or near the seabed by a plurality of acoustic pinging devices coupled to a deployment line and at least one surface buoy. The acoustic pinging devices are configured to emit a unique ID that may be detected by a receiver or transceiver located on each of the surface buoys. The acoustic pinging devices may be coupled to each node or only to a portion of the plurality of nodes (such as every two, three, or four nodes). The monitoring system may be configured to identify the ID, position, depth, and height of each seismic node during travel to the seabed and upon node touchdown with the seabed. A guidance system may be configured to guide the deployment of the deployment cable based upon node position data determined by the monitoring system.
Abstract:
Embodiments of systems and methods for storing and handling a plurality of autonomous seismic nodes are presented. The node handling and storage system may be coupled to a node deployment system that deploys and/or retrieves nodes from water from the back deck of a marine vessel. One embodiment of the node handling and storage system includes a plurality of portable containers that may be assembled in a variety of configurations based on the vessel and survey requirements. The containers are coupled to an autonomous or semi-autonomous node conveyor and/or transport system that moves the nodes between and within the containers for node cleaning, downloading, charging, servicing, and storage. The conveyor system may include a plurality of different transport devices and/or systems, such as rotatable conveyors, lateral conveyors, lift mechanisms, and elevators.
Abstract:
Embodiments of an autonomous seismic node that can be positioned on the seabed are disclosed. The autonomous seismic node comprises a pressurized node housing substantially surrounded and/or enclosed by a non-pressurized node housing. The seismic node may be substantially rectangular or square shaped for node storage, handling, and deployment. One or more node locks may be coupled to either (or both) of the pressurized node housing or the non-pressurized node housing. The pressurized node housing may be formed as a cast monolithic titanium structure and may be a complex shape with irregularly shaped sides and be asymmetrical. In other embodiments, a non-pressurized housing may substantially enclose other devices or payloads besides a node, such as weights or transponders, and be coupled to a plurality of protrusions.
Abstract:
Embodiments, including apparatuses, systems and methods, for automatically attaching and detaching seismic devices to a deployment cable, including a plurality of autonomous seismic nodes. A node installation system may include a moveable node carrier coupled to a cable detection device and a node attachment device that is configured to move a direct attachment mechanism on a node into a locking or closed position about the deployment cable. In an embodiment for retrieval and/or detachment operations, the system may also be configured to automatically detect the position of a node and remove the node from the deployment line by actuating the direct attachment mechanism into an open or unlocked position. Other devices besides a node may be attached and detached from the deployment line if they are coupled to one or more direct attachment mechanisms.