Abstract:
A sensor includes detection circuitry and control circuitry coupled to the detection circuitry. The detection circuitry generates a detection signal indicative of a detected physical quantity. The control circuitry, in operation receives the detection signal and a frequency-indication signal, and generates a trigger signal based on the frequency-indication signal and a set of local reference signals. The sensor generates a digital output signal and a locking signal based on the trigger signal and the detection signal. The generating the digital output signal includes outputting a sample of the digital output signal based on the trigger signal. The locking signal is temporally aligned with the digital output signal.
Abstract:
A sensor includes detection circuitry and control circuitry coupled to the detection circuitry. The detection circuitry generates a detection signal indicative of a detected physical quantity. The control circuitry, in operation receives the detection signal and a frequency-indication signal, and generates a trigger signal based on the frequency-indication signal and a set of local reference signals. The sensor generates a digital output signal and a locking signal based on the trigger signal and the detection signal. The generating the digital output signal includes outputting a sample of the digital output signal based on the trigger signal. The locking signal is temporally aligned with the digital output signal.
Abstract:
A demodulator for demodulating the in-phase component of an input signal which is in-phase and quadrature modulated. The demodulator includes a register storing a phase calibration value and a temperature sensor that performs a plurality of temperature sensings. A compensating stage generates for each temperature sensed a corresponding first sample on the basis of the difference between the sensed temperature and a calibration temperature and a compensation function indicative of a relationship existing between the phase of the input signal and the temperature. A combination stage generates a plurality of second samples, each second sample being a function of the phase calibration value and a corresponding first sample. A generating stage generates a demodulating signal having a phase which depends on the second samples and a demodulating stage demodulates the input signal by means of the demodulating signal.
Abstract:
A MEMS sensor generates an output multiscale reading signal supplied to a full scale adjustment stage. The full scale adjustment stage includes a signal input configured to receive the reading signal, a saturation assessment block, and a full scale change block. The saturation assessment block is coupled to the signal input and configured to generate a scale increase request signal upon detection of a saturation condition. The full scale change block is coupled to the saturation assessment block and configured to generate a full scale change signal upon reception of the scale increase request signal.
Abstract:
A demodulator for demodulating the in-phase component of an input signal which is in-phase and quadrature modulated. The demodulator includes a register storing a phase calibration value and a temperature sensor that performs a plurality of temperature sensings. A compensating stage generates for each temperature sensed a corresponding first sample on the basis of the difference between the sensed temperature and a calibration temperature and a compensation function indicative of a relationship existing between the phase of the input signal and the temperature. A combination stage generates a plurality of second samples, each second sample being a function of the phase calibration value and a corresponding first sample. A generating stage generates a demodulating signal having a phase which depends on the second samples and a demodulating stage demodulates the input signal by means of the demodulating signal.
Abstract:
One or more first signals and one or more second signals, wherein the second signal(s) are slowly varying or low frequency signals in comparison with the first signals and are converted from analog to digital by sampling the first signals and the second signals to produce samples thereof for analog-to-digital conversion, subjecting the samples of the first signals to conversion to digital at a certain conversion rate, subjecting the samples of the second signal to conversion to digital by segments so that these segments are subjected to conversion to digital along with the samples of the first signals at the respective conversion rate, and reconstructing digital converted samples of the second signal from the segments subjected to conversion to digital.