Abstract:
A cover panel and a display device, the cover panel including a heat sink layer; an impact absorbing layer on the heat sink layer; and an elastic pattern on at least one side of the impact absorbing layer.
Abstract:
An exemplary embodiment provides a curved display device in which occurrences of black mura are prevented or otherwise reduced. The curved display device according to the exemplary embodiment includes a curved display panel displaying images; a rear surface cover covering and supporting a rear surface of the curved display panel; and a flexible front surface chassis supporting the curved display panel.
Abstract:
A display device may include these elements: a first data line; a second data line; a first subpixel electrode positioned at a first half of the display device, connected to the first data line, and comprising a first member and a second member, the first member extending parallel to the first data line, the second member connecting directly to and extending perpendicular to the first member; and a second subpixel electrode positioned at a second half of the display device, connected to the second data line, and comprising a third member and a fourth member, the third member extending parallel to the second data line, the fourth member connecting directly to and extending perpendicular to the third member, wherein the second member and the fourth member are aligned and are positioned between the first member and the third member in a layout view of the display device.
Abstract:
A method of manufacturing a curved liquid crystal display is provided. The method includes forming a first display panel including a plurality of first patterns, forming a second display panel including a plurality of second patterns, assembling the first display panel and the second display panel, filling a liquid crystal between the assembled first and second display panels to form a flat liquid crystal display, and curving the flat liquid crystal display in a first direction to form the curved liquid crystal display. The first patterns and the second patterns are mismatched in the flat liquid crystal display, and the first patterns and the second patterns are matched in the curved liquid crystal display.
Abstract:
A display device according to an exemplary embodiment of the present inventive concept includes: a first insulation substrate; a thin film transistor disposed on the first insulation substrate; a pixel electrode coupled to the thin film transistor; a second insulation substrate facing the first insulation substrate; and a common electrode disposed on the second insulation substrate. The pixel electrode includes a first subpixel electrode including a first vertical stem portion and a first horizontal stem portion that is disposed perpendicular to the first vertical stem portion at an end of the first vertical stem portion, and a second subpixel electrode including a second vertical stem portion and a second horizontal stem portion that is disposed perpendicular to the second vertical stem portion at an end of the second vertical step portion.
Abstract:
A liquid crystal display includes: a substrate including a plurality of pixel areas; a thin film transistor disposed on the substrate; a pixel electrode connected with the thin film transistor; and a roof layer disposed facing the pixel electrode, wherein a plurality of microcavities are disposed between the pixel electrode and the roof layer, and a liquid crystal layer including liquid crystal molecules is disposed in the plurality of microcavities, and wherein each microcavity includes a first area and a second area partitioned by a liquid crystal injection hole formation area, and a first alignment layer in the first area and a second alignment layer in the second area are formed of different materials.
Abstract:
A display device comprises a display panel including a display area including pixels, and a pad area adjacent to the display area, and a driving integrated circuit mounted on the pad area, wherein the pad area includes a stud pad area located at an edge of the pad area and including at least one stud pad electrode, the driving integrated circuit includes a circuit base, and at least one stud bump area overlapping the stud pad area in a thickness direction of the display device and including at least one stud bump, and the at least one stud pad electrode overlaps an edge portion of the at least one stud bump.
Abstract:
A display device includes a display panel including a plurality of pad electrodes, a driving member attached to the display panel and including a plurality of bumps facing the plurality of pad electrodes, respectively, a plurality of conductive particles interposed between the display panel and the driving member, and a plurality of alignment electrodes separated from the plurality of pad electrodes and the plurality of bumps, where an opening is defined in at least one of a pad electrode of the plurality of pad electrodes and a bump of the plurality of bumps includes an opening, and an alignment electrode of the plurality of alignment electrodes is disposed in the opening.
Abstract:
A display device includes a substrate including an active area having pixels and a non-active area including a pad region. A pad electrode is disposed in the pad region and includes a first pad electrode and a second pad electrode disposed on the first pad electrode. A first insulating pattern is interposed between the first and second pad electrodes. In a plan view, the first insulating pattern is positioned inside the first pad electrode, and a portion of the second pad electrode overlapping the first insulating pattern protrudes further from the substrate in a thickness direction than a portion of the second pad electrode not overlapping the first insulating pattern. The second pad electrode directly contacts a portion of the upper surface of the first pad electrode. In a plan view, an area of the second pad electrode is greater than an area of the first pad electrode.
Abstract:
A curved liquid crystal display includes a first panel having a pixel electrode including crossed stem parts, a plurality of fine branch parts extending from the crossed stem parts, and fine slits positioned between fine branch parts adjacent to each other, a second panel having a common electrode, and a liquid crystal layer between the first panel and the second panel. Misalignment between the first panel and the second lower panel is determined and a pitch, which is a sum of a width of the fine branch part and a width of the fine slit, gradually increases from a region having a small misalignment toward a region having a large misalignment.