Abstract:
There is provided a pixel having an improved display quality. The pixel includes an OLED, a first transistor including a first electrode coupled to a data line and a second electrode coupled to an anode electrode of the OLED, and configured to control a current supplied to the OLED based on a voltage applied to a first node; a second transistor coupled between the data line and a second node; a third transistor coupled between the second node and a first power line for supplying reference power; and a first capacitor coupled between the first node and the second node.
Abstract:
An organic light emitting display capable of improving display quality. The organic light emitting display includes a data driver for supplying bias power supply to data lines in a first period of one frame, for supplying reference power supply in a second period, and for supplying data signals in a fourth period, a scan driver for sequentially supplying scan signals to scan lines in the fourth period, pixels positioned at intersections of the scan lines and the data lines, and a first control line, a second control line, a third control line, and a fourth control line commonly coupled to the pixels. Each of the pixels includes a first capacitor for previously charging voltages corresponding to the data signals and a second capacitor charged by a voltage of the first capacitor in a third period between the second period and the fourth period.
Abstract:
An organic light emitting display apparatus includes a base layer, a circuit element layer, a display element layer, an encapsulation layer, and a sealing member. The circuit element layer includes a power supply line on the base layer and an auxiliary power supply pattern on and connected to the power supply line. The display element layer includes a first electrode, a light emitting layer, and a second electrode, which are sequentially stacked on the circuit element layer. The second electrode is electrically connected to the auxiliary power supply pattern. The sealing member is between the circuit element layer and the encapsulation layer to overlap with the auxiliary power supply pattern when viewed in a plan view.
Abstract:
A light emitting display device including a first pixel including a first driving transistor, a first input transistor, a first initialization transistor, a first storage capacitor, and a first light emitting diode (LED); and a second pixel including a second driving transistor, a second input transistor, a second initialization transistor, a second storage capacitor, and a second light emitting diode (LED. The first pixel further includes a first gate electrode connecting member connecting a first gate electrode of the first driving transistor and the first input transistor; the second pixel further includes a second gate electrode connecting member connecting a second gate electrode of the second driving transistor and the second input transistor; the first light emitting diode (LED) includes a first anode; the second light emitting diode (LED) includes a second anode; and the first gate electrode connecting member does not overlap the second anode in a plan view.
Abstract:
A display device includes: a substrate; first, second, and third data lines extending in a first direction on the substrate and disposed to be adjacent along a second direction crossing the first direction; a semiconductor layer disposed on the first, second, and third data lines; a first insulating layer disposed on the semiconductor layer; first, second, and third lower storage electrodes disposed on the first insulating layer and arranged to be adjacent along the first direction; a second insulating layer disposed on the first, second, and third lower storage electrodes; a first scan line extending in the second direction on the second insulating layer; a first pixel connected to the first scan line and the first data line; a second pixel connected to the first scan line and the second data line; and a third pixel connected to the first scan line and the third data line.
Abstract:
A degradation compensating pixel circuit includes: an organic light emitting diode (OLED); a driving circuit including a first capacitor and a first transistor, the first capacitor being configured to be charged in response to a data signal and a scan signal, the first transistor being configured to drive the OLED according to a first voltage between first and second terminals of the first capacitor, the first terminal of the first capacitor being configured to receive a supply voltage, the second terminal of the first capacitor being coupled to a gate terminal of the first transistor; and a degradation compensating circuit coupled to a source terminal of the first transistor and the gate terminal of the first transistor, the degradation compensating circuit being configured to change the first voltage according to a first current of the first transistor.
Abstract:
A display device including: a substrate; a first semiconductor layer disposed on the substrate; a second semiconductor layer disposed on the substrate and adjacent to the first semiconductor layer; a first insulation layer disposed on both the first semiconductor layer and the second semiconductor layer, the first insulation layer including a first opening forming a space between the first semiconductor layer and the second semiconductor layer; and a second insulation layer disposed on the first insulation layer and that fills the first opening.
Abstract:
A display device includes a substrate, a first conductive layer disposed on the substrate, a second conductive layer disposed on the first conductive layer and a third conductive layer disposed on the second conductive layer. The first conductive layer includes a data line extending in a first direction. The second conductive layer includes a first scan line extending in a second direction intersecting the first direction, and a second scan line spaced apart from the first scan line and extending in the second direction. The third conductive layer includes a first driving voltage line extending in the second direction, a first common voltage line spaced apart from the first driving voltage line and extending in the second direction, and a pixel electrode disposed between the first driving voltage line and the first common voltage line in a plan view.
Abstract:
A display device includes a display panel including a plurality of pixels, a gate driver which provides a gate signal to corresponding pixels of the plurality of pixels, a data driver which provides a data voltage to the corresponding pixels of the plurality of pixels, a power voltage generator which provides a pixel power voltage to each of the plurality of pixels, and provides a gate power voltage to the gate driver, and a controller which provides a gate control signal to the gate driver. The pixel power voltage, the data voltage, and the gate control signal sequentially have a ground voltage level in response to a power-off signal.
Abstract:
A display device includes: a substrate; first, second, and third data lines extending in a first direction on the substrate and disposed to be adjacent along a second direction crossing the first direction; a semiconductor layer disposed on the first, second, and third data lines; a first insulating layer disposed on the semiconductor layer; first, second, and third lower storage electrodes disposed on the first insulating layer and arranged to be adjacent along the first direction; a second insulating layer disposed on the first, second, and third lower storage electrodes; a first scan line extending in the second direction on the second insulating layer; a first pixel connected to the first scan line and the first data line; a second pixel connected to the first scan line and the second data line; and a third pixel connected to the first scan line and the third data line.