Abstract:
An organic light emitting diode display panel including an upper substrate, an organic light emitting device facing the upper substrate and emitting a light to the upper substrate, and a light extraction layer disposed between the upper substrate and the organic light emitting device, including first and second optical layers each having a polymer network liquid crystal and having different optical properties, and exiting the light to the outside of the upper substrate. The optical property of the polymer network liquid crystal in the first optical layer differs from the optical property of the polymer network liquid crystal in the second optical layer.
Abstract:
A display device includes a substrate comprising a plurality of pixel areas and a non-pixel area surrounding each of the plurality of pixel areas. The non-pixel area includes a plurality of first areas and a second area surrounding the plurality of first areas. A functional layer is disposed on the substrate and includes a plurality of first holes defined through the functional layer and overlapping the plurality of first areas. An element layer is disposed on the functional layer. A pixel definition layer is disposed on the element layer and overlaps the non-pixel area. The pixel definition layer includes pixel openings defined therethrough. The pixel openings overlap the plurality of pixel areas. A plurality of light emitting elements is disposed on the element layer and is disposed in the pixel openings.
Abstract:
A display device includes a substrate comprising a plurality of pixel areas and a non-pixel area surrounding each of the plurality of pixel areas. The non-pixel area includes a plurality of first areas and a second area surrounding the plurality of first areas. A functional layer is disposed on the substrate and includes a plurality of first holes defined through the functional layer and overlapping the plurality of first areas. An element layer is disposed on the functional layer. A pixel definition layer is disposed on the element layer overlaps the non-pixel area. The pixel definition layer includes pixel openings defined therethrough. The pixel openings overlap the plurality of pixel areas. A plurality of light emitting elements is disposed on the element layer and is disposed in the pixel openings.
Abstract:
A display apparatus includes a display panel which displays an image and a vibration member attached to a surface of the display panel, where the vibration member receives a sound signal, generates a vibration in response to the sound signal, and transfers the vibration to the display panel to allow the display panel to output a sound.
Abstract:
A method of manufacturing an organic light emitting diode display panel, including forming a lower substrate, the lower substrate including a first area and a second area; forming an organic light emitting device on the lower substrate; disposing a polymer network liquid crystal on the organic light emitting device; forming a second optical layer in the second area, the second optical layer including the polymer network liquid crystal; and varying an optical property of the polymer network liquid crystal so as to form a first optical layer in the first area. The optical property of the polymer network liquid crystal in the first optical layer differs from the optical property of the polymer network liquid crystal in the second optical layer.
Abstract:
Provided is an image display apparatus. The image display apparatus includes a display panel displaying an image through a display area, a plurality of acoustic devices disposed on a non-display area around the display area, a protection member accommodating the display panel and the acoustic devices, and a plurality of opening parts defined to corresponding to the acoustic devices, the plurality of opening parts being defined by opening the protection member of the non-display area in both directions perpendicular to a plane.
Abstract:
A pair of awareness glasses includes a frame, a light source, a driving unit, light guide lenses, and diffraction grating patterns. The light source unit is disposed in the frame. The light source unit is configured to generate light in response to input power. The driving unit is configured to supply the input power. The light guide lenses are configured to guide the light to the eyes of a user. The diffraction grating patterns are formed on surfaces of the light guide lenses. The diffraction grating patterns are configured to diffract and reflect the light to the eyes of the user. The light output from each of the diffraction grating patterns has a peak wavelength between 444 nm and 484 nm.