Abstract:
A display panel includes a thin film transistor substrate and a display layer disposed on the thin film transistor substrate and having a display. The thin film transistor substrate may include a base substrate, a stress relief layer disposed on the base substrate and including at least one stress relief pattern, and a driver layer disposed on the stress relief layer and including at least one thin film transistor coupled to the display.
Abstract:
A manufacturing method of a display device includes: forming a flexible substrate on a sacrificial substrate; forming a display element unit on a first surface of the flexible substrate, the display element unit including a TFT and an organic light-emitting element; separating the sacrificial substrate from the flexible substrate; and forming a protective layer by depositing an organic material on a second surface of the flexible substrate, the second surface being opposite to the first surface.
Abstract:
A display device includes a flexible substrate, a display element unit disposed on a first surface of the flexible substrate and including a thin-film transistor (TFT) and an organic light-emitting element coupled to the TFT, and a protective layer comprising an organic material and disposed directly on a second surface of the flexible substrate, the second surface being opposite to the first surface. Impact resistance of the display device can be strengthened by lowering of the neutral plane through the use of the protective layer.
Abstract:
A display device includes a substrate, a barrier layer, a transistor, and a first impact buffer layer. The barrier layer is disposed on the substrate. The transistor is disposed on the barrier layer. The first impact buffer layer is disposed between the barrier layer and the transistor. The first impact buffer layer includes a nanostructure. The nanostructure includes pores.
Abstract:
A mask comprises a mask frame defining an opening; a plurality of support bars installed in the opening of the mask frame; a plurality of movable bars, each of which is installed over a corresponding one of the plurality of support bars and movable relative to the corresponding support bar, wherein the plurality of support bars and the plurality of movable bars are arranged to divide the opening into a plurality of mask holes; and a plurality of actuators installed between the plurality of movable bars and the corresponding support bars and configured to move the movable bars relative to the plurality of support bars.
Abstract:
A method of manufacturing an organic light emitting display includes: patterning an amorphous silicon layer to form an amorphous silicon layer pattern; forming an insulating layer on the amorphous silicon layer pattern; forming a gate electrode on a part of the insulating layer which corresponds to the amorphous silicon layer pattern; forming a blocking film on the gate electrode and the insulating layer; doping an impurity in a part of the amorphous silicon layer pattern; annealing the amorphous silicon layer pattern on which the impurity is doped to form a semiconductor layer; removing the blocking film; etching the insulating layer using the gate electrode as a mask to form a gate insulating layer below the gate electrode; forming an interlayer insulating layer using an organic insulator on a buffer layer, the gate electrode, and the semiconductor layer.