Abstract:
A display apparatus including a display substrate, a light-emitting device on the display substrate, an encapsulation substrate on the light-emitting device and bonded to the display substrate, and a diffraction-grating layer on a top surface of the encapsulation substrate, wherein the diffraction-grating layer includes a plurality of diffraction patterns spaced apart from one another by a predetermined distance, and each of the plurality of diffraction patterns has a stacked structure of a lower layer and an upper layer, wherein the lower and upper layers include different materials.
Abstract:
A display apparatus including a display substrate, a light-emitting device on the display substrate, an encapsulation substrate on the light-emitting device and bonded to the display substrate, and a diffraction-grating layer on a top surface of the encapsulation substrate, wherein the diffraction-grating layer includes a plurality of diffraction patterns spaced apart from one another by a predetermined distance, and each of the plurality of diffraction patterns has a stacked structure of a lower layer and an upper layer, wherein the lower and upper layers include different materials.
Abstract:
A display device includes a first pixel region (FPR), a second pixel region (SPR), a color conversion pattern (CCP), a first overcoat layer (FOL), a barrier layer (BL), a second overcoat layer (SOL), a liquid crystal layer (LCL), and a switching element (SE). The FPR is configured to display a first color (FC). The SPR is adjacent the FPR, and is configured to display a second color (SC) of a shorter peak wavelength than the FC. The CCP is disposed in the FPR, and is configured to: convert a color of incident light into the FC; and output converted light of the FC. The FOL is disposed on the CCP. The BL is of an inorganic material, and is disposed on the FOL. The SOL is of an organic material, and is disposed on the BL. The LCL is disposed on the SOL. The SE is disposed on the LCL.
Abstract:
A liquid crystal display (“LCD”) device and a method of manufacturing the LCD device, the LCD device including: a substrate including a display area and a non-display area; a blue light blocking filter on the substrate; a plurality of color pattern layers spaced apart from one another in a plan view; a black matrix among the plurality of color pattern layers in a plan view; a planarization layer on the color pattern layer and the black matrix; and a polarizer on the planarization layer. The color pattern layer includes: a red color conversion unit on the blue light blocking filter, the red color conversion unit converting a light into a light having a red wavelength; and a green color conversion unit on the blue light blocking filter, the green color conversion unit converting a light into a light having a green wavelength, and the red color conversion unit and the green color conversion unit include wavelength converting particles.
Abstract:
A display device and a method for fabricating a display device are provided. According to one embodiment of the present invention, a display device includes a substrate, an insulating layer arranged on the substrate, a wiring pattern arranged on the insulating layer, an organic layer arranged on the wiring pattern, and a contact hole penetrating the organic layer to expose at least a portion of the wiring pattern. The side wall of the organic layer that defines the contact hole includes a first side wall portion and a second side wall portion, and a value obtained by dividing a vertical distance of the first side wall portion by a horizontal distance of the first side wall portion is different from a value obtained by dividing a vertical distance of the second side wall portion by a horizontal distance of the second side wall portion.
Abstract:
A display apparatus includes a display area and a peripheral area, a light-emitting diode including a sub-pixel electrode, a first data line in the display area and extending in a first direction, an input line in the peripheral area, and a connection wire in the display area and transmitting a data signal input to the first data line. The connection wire includes a first connection line extending in the first direction and a second connection line extending in a second direction, the first connection line overlaps the sub-pixel electrode with an insulating layer interposed between the sub-pixel electrode and the first connection line, the insulating layer includes a first insulating layer and a second insulating layer disposed on the first insulating layer, dielectric constants of the first and second insulating layers are different, and one of the first insulating layer and the second insulating layer includes BCB.
Abstract:
A display device and a method of manufacturing a display device are provided. An embodiment of a display device includes a substrate; a first conductive layer disposed on the substrate; a first insulating layer disposed on the first conductive layer; a second conductive layer connected to the first conductive layer through a first contact hole in the first insulating layer; a second insulating layer filling an inside of the first contact hole; and a third insulating layer disposed on the second conductive layer and the second insulating layer. The first insulating layer includes a first region that overlaps the second conductive layer and a second region that does not overlap the second conductive layer, and a top surface of the first region of the first insulating layer is positioned higher than a top surface of the second region of the first insulating layer.
Abstract:
A display device includes: a substrate; a display area in which a plurality of pixels are arranged over the substrate; and a transmission area arranged inside the display area, where the transmission area is provided to overlap a component below the substrate, and a transparent organic layer including siloxane is arranged in the transmission area.
Abstract:
A liquid crystal display device and a method of manufacturing the same are provided. The LCD device includes a substrate including a display area and a non-display area, a blue light blocking filter on the substrate, a plurality of color pattern layers spaced apart from one another in a plan view, a black matrix among the plurality of color pattern layers in a plan view, a planarization layer on the color pattern layer and the black matrix, and a polarizer on the planarization layer. The color pattern layer includes a red color conversion unit on the blue light blocking filter, which converts a light into a light having a red wavelength and a green color conversion unit on the blue light blocking filter, which converts a light into a light having a green wavelength. The red color conversion unit and the green color conversion unit include wavelength converting particles.