Abstract:
The ultrasonic diagnostic apparatus includes an ultrasonic transducer array in which ultrasonic transducer elements are two-dimensionally arranged; and a controller configured to control the ultrasonic transducer elements to transmit ultrasonic signals and control the ultrasonic transducer elements arranged in rows of the ultrasonic transducer array to sequentially receive ultrasonic echo signals.
Abstract:
An image processing apparatus includes a speckle energy analyzer configured to analyze speckle energy of an ultrasound image signal, the ultrasound image signal being received from an ultrasound probe, and an image decomposer configured to decompose the ultrasound image signal into one or more ultrasound image signals of different frequency bands, based on the analyzed speckle energy of the ultrasound image signal.
Abstract:
A beamforming apparatus configured to beamform ultrasound waves transmitted through an ultrasound transducer having a two-dimensional transducer array includes a transmitter configured to output transmission pulses configured to drive elements constituting the transducer array, and a transmission switch configured to select at least two elements among the elements to form an aperture such that the transmission pulses drive the elements forming the aperture.
Abstract:
A beamforming apparatus includes: a signal output unit configured to output signals; a time difference corrector configured to correct a time difference between the signals; and a weight applier configured to apply a weight value to the signals, according to an error between the signals with the corrected time difference and a target delay pattern.
Abstract:
Disclosed herein is an ultrasonic diagnostic apparatus including: an ultrasonic probe including an ultrasonic transducer array; and an ultrasonic diagnostic apparatus main body comprising a transceiver configured to transmit and receive ultrasonic waves via the ultrasonic transducer array, an image processor configured to generate an ultrasonic image of an object based on an ultrasonic echo signal acquired via the transceiver, a communication unit configured to wirelessly communicate with a docking station, and a charge unit configured to charge power which is received wirelessly from the docking station via the communication unit, in a charge battery. Therefore, it is possible to efficiently supply power to the ultrasonic diagnostic apparatus main body regardless of time and place, and to improve mobility and portability of the ultrasonic diagnostic apparatus main body.
Abstract:
Disclosed herein is an ultrasonic imaging apparatus. The ultrasonic imaging apparatus includes an ultrasonic probe arranged at a distal end portion of the ultrasonic imaging apparatus and a bending part connected to the ultrasonic probe and configured to be bendable. Heat generated by the ultrasonic probe is dissipated toward the bending part.
Abstract:
Disclosed herein is an ultrasonic probe configured to release heat generated by a transducer to an exterior of the ultrasonic probe via a heat pipe and a radiator. The ultrasonic probe includes a housing; a transducer configured to generate ultrasonic waves while disposed in an interior of the housing; a heat pipe configured to transfer the heat generated by the transducer; a radiator connected to the heat pipe and configured to release the heat, which is transferred via the heat pipe, to the exterior of the housing; and a partition wall configured to separate an inside space within the housing.