Abstract:
A positive electrode for a lithium battery including a protected negative electrode containing a lithium metal or a lithium alloy, wherein the positive electrode contains a positive electrode active material, a polyoxometalate compound, and a conductive material. Also provided is a lithium battery including the positive electrode.
Abstract:
A lithium air battery module including a lithium air battery cell including a first electrolyte; an additional electrolyte disposed non-adjacent the first electrolyte; and a housing which accommodates the lithium air battery cell and the additional electrolyte.
Abstract:
A metal-air battery including: a negative electrode metal layer; a negative electrode electrolyte layer disposed on the negative electrode metal layer; a positive electrode layer disposed on the negative electrode electrolyte layer, the positive electrode layer comprising a positive electrode material which is capable of using oxygen as an active material; and a gas diffusion layer disposed on the positive electrode layer, wherein the negative electrode electrolyte layer is between the negative electrode metal layer and the positive electrode layer; wherein the negative electrode metal layer, the negative electrode electrolyte layer, and the positive electrode layer are disposed on the gas diffusion layer so that the positive electrode layer contacts a lower surface and an opposite upper surface of the gas diffusion layer, and wherein one side surface of the gas diffusion layer is exposed to an outside.
Abstract:
An air battery cathode including an organic-inorganic composite material including lyophobic nanopores, the organic-inorganic composite material including a porous metal oxide, and a lyophobic layer on a surface of a pore of the porous metal oxide and having a contact angle of greater than about 90°; and a binder. Also a lithium air battery including the cathode, and a method of manufacture the cathode.
Abstract:
A protected anode for lithium air batteries and a lithium air battery including the protected anode are provided. The protected anode includes: an anode intercalates and deintercalates lithium ions; a lithium ion-conductive solid electrolyte membrane; and a polymer electrolyte disposed between the anode and the ion-conductive solid electrolyte membrane, wherein the polymer electrolyte includes a lithium ion-conductive polymer, a compound represented by Formula 1 having a number average molecular weight from about 300 to about 1,000, and a lithium salt, and an amount of the compound of Formula 1 is from about 10 parts to about 25 parts by weight based on 100 parts by weight of the polymer electrolyte: In Formula 1, R1 to R6, and n are the same as defined in the specification.
Abstract:
The apparatus of charging a rechargeable battery includes a voltage detector which detects a voltage value between terminals of a rechargeable battery, a current generator which generates current for charging the rechargeable battery and outputs the generated current to the terminals of the rechargeable battery, and a controller which controls the current generator based on the voltage value detected by the voltage detector. The current generator outputs a first current for which a direction thereof between the terminals of the rechargeable battery is constant, in a charging period of the rechargeable battery, wherein the first current comprises direct current, and a second current for which a direction thereof between the terminals of the rechargeable battery is periodically reversed, in an intermittent period of the rechargeable battery.
Abstract:
A metal-air battery including: a negative electrode metal layer; a negative electrode electrolyte layer disposed on the negative electrode metal layer; a positive electrode layer disposed on the negative electrode electrolyte layer, the positive electrode layer comprising a positive electrode material which is capable of using oxygen as an active material; and a gas diffusion layer disposed on the positive electrode layer, wherein the negative electrode electrolyte layer is between the negative electrode metal layer and the positive electrode layer; wherein the negative electrode metal layer, the negative electrode electrolyte layer, and the positive electrode layer are disposed on the gas diffusion layer so that the positive electrode layer contacts a lower surface and an opposite upper surface of the gas diffusion layer, and wherein one side surface of the gas diffusion layer is exposed to an outside.
Abstract:
A metal-air battery including: a negative electrode metal layer; a negative electrode electrolyte layer disposed on the negative electrode metal layer; a positive electrode layer disposed on the negative electrode electrolyte layer, the positive electrode layer comprising a positive electrode material which is capable of using oxygen as an active material; and a gas diffusion layer disposed on the positive electrode layer, wherein the negative electrode electrolyte layer is between the negative electrode metal layer and the positive electrode layer; wherein the negative electrode metal layer, the negative electrode electrolyte layer, and the positive electrode layer are disposed on the gas diffusion layer so that the positive electrode layer contacts a lower surface and an opposite upper surface of the gas diffusion layer, and wherein one side surface of the gas diffusion layer is exposed to an outside.
Abstract:
A lithium battery including a negative electrode including a lithium metal or a lithium alloy; a positive electrode; and a polymer gel electrolyte contacting the negative electrode, wherein the polymer gel electrolyte has an ionic conductivity of about 10−3 S/cm or greater, a lithium ion transference number of about 0.15 or greater, and a lithium ion mobility of about 10−6 cm2/V×sec or greater, wherein the polymer gel electrolyte includes a lithium salt, a polymer capable of forming a complex with the lithium salt, an insulating inorganic filler, and an organic solvent, wherein the organic solvent is inert with respect to the lithium metal, wherein an anionic radius of the lithium salt is about 2.5 Angstroms or greater, and wherein a molecular weight of the lithium salt is about 145 or greater.