Abstract:
A resonance apparatus that processes an electrical loss using a conductive material and a method of manufacturing the resonance apparatus are provided. The resonance apparatus includes a lower electrode formed at a predetermined distance from a substrate, and a piezoelectric layer formed on the lower electrode. The resonance apparatus further includes an upper electrode formed on the piezoelectric layer, and a conductive layer formed on the upper electrode or the lower electrode.
Abstract:
A resonance apparatus that processes an electrical loss using a conductive material and a method of manufacturing the resonance apparatus are provided. The resonance apparatus includes a lower electrode formed at a predetermined distance from a substrate, and a piezoelectric layer formed on the lower electrode. The resonance apparatus further includes an upper electrode formed on the piezoelectric layer, and a conductive layer formed on the upper electrode or the lower electrode.
Abstract:
A bulk acoustic wave resonator (BAWR) includes a bulk acoustic resonance unit and at least one compensation layer. The bulk acoustic resonance unit includes a first electrode, a second electrode, and a piezoelectric layer disposed between the first electrode and the second electrode. The first electrode, the second electrode, and the piezoelectric layer each include a material that modifies a resonance frequency based on a temperature, and the at least one compensation layer includes a material that adjusts the resonance frequency modified based on the temperature in a direction opposite to a direction of the modification.
Abstract:
A method of measuring biological sample properties and a biological sample property measuring apparatus is provided. A method of measuring biological sample properties includes disposing a biomaterial to contact a sensing unit, detecting a radio frequency (RF) signal flowing through the sensing unit, and obtaining an RF property indicator of the biomaterial based on the detected RF signal.
Abstract:
Provided are a matching segment circuit, to which a radio frequency (RF) is applied, and an RF integrated device using the matching segment circuit. The matching segment circuit to which an RF is applied may include an input end connected to a first RF device, a parallel segment having a first capacitor and a first inductor connected in parallel, a second inductor connected to the parallel segment in series, and an output end connected to a second RF device. The first capacitor, the first inductor, and the second inductor may be configured so that an impedance of the first RF device and an impedance of the second RF device may match.