Abstract:
Provided are a method and apparatus for processing a medical image. The apparatus includes: a data obtainer configured to obtain raw data generated by imaging an object; and a processor configured to determine motion correction parameters used to reconstruct an image to be used to obtain motion information based on motion characteristics of the object, obtain the motion information by using the image reconstructed based on the determined motion correction parameters, and reconstruct a tomography image from the raw data by using the motion information.
Abstract:
A tomography apparatus includes a data obtainer configured to obtain first image data at a first point and second image data at a second point using tomography, the tomography being performed by irradiating an X-ray to an object; an image processor configured to perform noise reduction based on at least one from among the first image data and the second image data, and to obtain a first reference image corresponding to the first image data and a second reference image corresponding to the second image data using a result of the performed noise reduction; and an image reconstructor configured to reconstruct a target image representing the object based on the first reference image and the second reference image.
Abstract:
A tomography apparatus and a method of processing a tomography image are provided. The tomography apparatus includes a data acquirer configured to acquire a first image corresponding to a first time point and a second image corresponding to a second time point, based on data that is obtained from performing tomography on a moving object, acquire first information indicating a movement of the object between the first time point and the second time point, and determine a motion reliability indicating a degree to which the movement of the object corresponds to a physical movement, based on the first information. The tomography apparatus further includes an image reconstructor configured to reconstruct a target image indicating the object at a target time point, based on the motion reliability.
Abstract:
An X-ray imaging apparatus displays a bone or soft tissue image of an X-ray image, which corresponds to a region selected by a user, thereby reducing a diagnosis time. In addition, an X-ray imaging system transmits a first energy X-ray image and a second energy X-ray image to a central image management system, and a user control apparatus receives the images from the central image management system and displays a bone or soft tissue image corresponding to the selected region, thereby reducing burden imposed on server capacity of the central image management system as well as reducing a diagnosis time.
Abstract:
A medical imaging apparatus includes an X-ray source configured to irradiate X-rays to an object; an X-ray detector configured to detect the X-rays radiated from the X-ray source to obtain projection data; and an image processor configured to reconstruct the projection data based on a motion parameter representing movement of at least one of the object, the X-ray source, and the X-ray detector, and to generate a medical image by applying a weighting process to the reconstructed projection data.
Abstract:
A tomography apparatus that may reduce partial scan artifacts includes: a data acquirer configured to acquire tomography data when X-rays are emitted as a cone beam to an object while rotating by one cycle angular section that is less than one rotation; and an image reconstructor configured to reconstruct a tomography image by using corrected tomography data that is obtained by applying to the tomography data a weight that is set based on at least one of a view that is included in the one cycle angular section and a cone angle in the cone beam.
Abstract:
An X-ray imaging apparatus and control method thereof precisely designates an imaging region and reduces user fatigue by designating a segmentation imaging region using an image of a target object captured by a camera and automatically controlling an X-ray generator according to the designated segmentation imaging region. The X-ray imaging apparatus includes an X-ray generator to perform X-ray imaging of a target object by generating and irradiating X-rays, an image capturer to capture an image of the target object, an image display to display the image captured by the image capturer, an input part to receive designation of a region for which segmentation imaging is to be performed on the image displayed on the image display, and a controller to control the X-ray generator to perform segmentation imaging with respect to the designated region.
Abstract:
Provided is a tomography apparatus including: a data acquisitor configured to obtain a first image by using tomography data acquired as a first X-ray generator for generating X-rays having a first energy rotates around an object over a first angular range and obtain a second image by using tomography data acquired as a second X-ray generator for generating X-rays having a second energy rotates around the object over a second angular range; a controller configured to acquire motion information representing an amount of motion of the object over time by using the first and second images; and an image reconstructor configured to reconstruct a target image showing the object at a target time point by using the motion information.
Abstract:
An X-ray imaging apparatus includes an imaging device that captures a camera image of a target, a controller that stitches a plurality of X-ray images of a plurality of divided regions to generate one X-ray image of the target, and a display that displays a settings window providing a graphical user interface for receiving a setting of an X-ray irradiation condition for the divided regions, and displays the camera image in which positions of the divided regions are displayed.