Abstract:
A tomographic image processing apparatus includes a data acquisition interface configured to acquire raw data; a memory; and at least one processor configured to: obtain, from the memory, a first partial reconstruction image corresponding to a partial angular range of a first rotation period of an X-ray generator; generate a second partial reconstruction image from partial raw data acquired in a partial angular range of a second rotation period of the X-ray generator, wherein the partial angular range of the first rotation period corresponds to the partial angular range of the second rotation period; generate a third partial reconstruction image based on the first partial reconstruction image and the second partial reconstruction image; store the third partial reconstruction image in the memory; and generate a resultant image based on the third partial reconstruction image and a plurality of partial reconstruction images stored in the memory.
Abstract:
Provided are a tomography imaging apparatus and a method of reconstructing a tomography image which may more accurately measure a motion of an object to be tomography-imaged. In detail, the tomography imaging apparatus and the method of reconstructing a tomography image may obtain information indicating a motion of a moving object according to a time, may perform motion correction based on the obtained motion information, and may reconstruct a target image with reduced motion artifacts.
Abstract:
A computed tomographic (CT) apparatus and for a method of controlling the same are provided. The CT apparatus includes an X-ray scanner configured to divide X-rays penetrating a subject by energy bands, and capture scout images of the respective energy bands. The CT apparatus further includes an image processor configured to generate substance images of substances of the subject, based on the scout images, and a display configured to display a substance image of the substance images. The CT apparatus further includes an input interface configured to receive a scanning region for the displayed substance image.
Abstract:
An X-ray imaging apparatus displays a bone or soft tissue image of an X-ray image, which corresponds to a region selected by a user, thereby reducing a diagnosis time. In addition, an X-ray imaging system transmits a first energy X-ray image and a second energy X-ray image to a central image management system, and a user control apparatus receives the images from the central image management system and displays a bone or soft tissue image corresponding to the selected region, thereby reducing burden imposed on server capacity of the central image management system as well as reducing a diagnosis time.
Abstract:
An X-ray imaging apparatus and control method thereof precisely designates an imaging region and reduces user fatigue by designating a segmentation imaging region using an image of a target object captured by a camera and automatically controlling an X-ray generator according to the designated segmentation imaging region. The X-ray imaging apparatus includes an X-ray generator to perform X-ray imaging of a target object by generating and irradiating X-rays, an image capturer to capture an image of the target object, an image display to display the image captured by the image capturer, an input part to receive designation of a region for which segmentation imaging is to be performed on the image displayed on the image display, and a controller to control the X-ray generator to perform segmentation imaging with respect to the designated region.
Abstract:
An apparatus includes an image analysis unit arranged to extract, from the medical image, brightness intensities of a first body lumen region of the medical image and brightness intensities of a second body lumen region of the medical image; and a measuring unit arranged to calculate a first body lumen value and a second body lumen value, each of the first body lumen value and a second body lumen value being calculated as a predetermined linear combination of the brightness intensities of the corresponding first body lumen region and second body lumen region, and to compare the first body lumen value with the second body lumen value.
Abstract:
A computed tomography (CT) image processing apparatus and a CT image processing method are provided. The CT image processing apparatus may generate a virtual monochromatic image (VMI) by applying a weight to each of first, second, and third images corresponding to three different energy ranges. The CT image processing apparatus may set a region of interest (ROI) on a CT image, determine a VMI at an energy level at which a CNR of the ROI is at a maximum among a plurality of VMIs, and display the determined VMI.
Abstract:
Provided is a medical image processing apparatus including a processor. The processor obtains raw data in a first phase section and generates first motion information by using at least one partial angle reconstruction (PAR) image pair including two PAR images respectively obtained in two phase sections in the first phase section that face each other. The processor also generates a summed image by summing a plurality of PAR images obtained at different phases within the first phase section by using the first motion information Second motion information is generated by updating the first motion information such that an image metric representing motion artifacts is minimized when being calculated from the summed image and a reconstructed image is generated by applying the second motion information to the raw data.
Abstract:
A tomography imaging apparatus is provided, including: a data acquisition unit configured to acquire a plurality of partial data respectively corresponding to a plurality of consecutive angular sections by performing a tomography scan on a moving object; and an image processing unit configured to measure global motion of the object and motion of a first region in the object based on the plurality of partial data, acquire first information representing motion of the object by reflecting the global motion in the motion of the first region, and reconstruct a final tomography image representing the object based on the first information.
Abstract:
An image processing apparatuses includes a pressure sensor to sense an amount of pressure and an image processing controller to generate at least one image of an object. Region growing parameters are determined based on the sensed amount of pressure, and region growing is performed from a reference location based on the determined region growing parameters.