Abstract:
A two-hop link transmission method and apparatus are provided. The method includes establishing a two-hop link and scheduling transmission on the two-hop link in a Device-To-Device (D2D) communication network. The two-hop link transmission method includes identifying neighbor terminals available for communication with the transmission terminal, selecting one of the neighboring terminals as a recipient terminal, determining a type of a link to be established with the selected neighboring terminal between a single-hop link and two-hop link types, selecting, when the two-hop link type is determined, a relay terminal among the neighboring terminals, establishing the two-hop link with the recipient terminal via the relay terminal, allocating a Multi-Hop Connection Identifier (MCID) for the two-hop link, and transmitting data to the recipient terminal through the two hop link.
Abstract:
A semiconductor package including a substrate including a through hole, an image sensor structure on the substrate, and a first transparent substrate on the substrate and spaced apart from the image sensor structure may be provided. The image sensor structure includes a logic chip on the substrate, a first sensing chip on an active surface of the logic chip, and a second sensing chip on an inactive surface of the logic chip and connected to the active surface of the logic chip through a first via that vertically penetrates the logic chip. On a bottom surface of the logic chip, at least a portion of one of the first sensing chip and the second sensing chip is in the through hole.
Abstract:
A fifth generation (5G) or a pre-5G communication system provided to support a higher data transmission rate than a system after a fourth generation (4G) communication system, such as long-term evolution (LTE) is provided. An apparatus of a user equipment (UE) using device-to-device (D2D) communication is provided. The apparatus includes at least one processor, and at least one transceiver configured to be operatively coupled to the at least one processor, wherein the at least one processor is configured to receive a response message from each of a plurality of UEs in response to a request message transmitted from the UE, identify at least one UE for a dynamic group from among the plurality of UEs based on the response message, generate an identifier (ID) for the dynamic group based on an ID of the UE, and transmit, to the at least one UE, a group create message including the ID for the dynamic group.
Abstract:
A terminal and a distance estimation method thereof for use in a wireless communication system supporting device-to-device (D2D) communication are provided. The terminal includes a transceiver configured to communicate with other terminals and at least one processor configured to control the transceiver to transmit a discovery message including time information to the other terminals and receive distance information calculated by the other terminals, the distance information being calculated based on the time information. The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system, such as Long Term Evolution (LTE).
Abstract:
A scheduling method and apparatus using a non-orthogonal Connection IDentifier (CID) for use in a device-to-device communication system is provided. The scheduling method includes generating a non-orthogonal CID for communication with a counterpart terminal, determining slot indices for communication using the non-orthogonal CID, and communicating with the counterpart terminal through the slots indicated by the slot indices. The non-orthogonal CID-based scheduling method and apparatus is capable of selecting the slots for use in the non-orthogonal CID-based scheduling according to a rule so as to overcome CID collision in the system of using the non-orthogonal CID.