Abstract:
A light emitting diode (LED) module includes a substrate layer including an active area and a non-active area excluding the active area, at least one wiring layer provided on the substrate layer, and a test pad connected to the at least one wiring layer and provided in the non-active area.
Abstract:
A display module including a plurality of pixels is provided. The display module according to an embodiment includes a plurality of inorganic light emitting elements constituting the plurality of pixels, a plurality of pixel circuits provided for each of the plurality of inorganic light emitting elements and providing a driving current corresponding to an applied grayscale data voltage to each of the plurality of inorganic light emitting elements, and an ESD (Electro Static Discharge) protection circuit arranged in at least one of the plurality of pixel circuits.
Abstract:
According to certain embodiments, an electronic device may include a camera, a display, a processor operatively coupled with the camera and the display, and a memory operatively coupled with the processor, wherein the memory may store instructions, when executed, causing the processor to store information of a purchased item in relation to the electronic device, in the memory, after storing the item information, display an image acquired using the camera, as a preview image on the display, identify that at least one object in the image corresponds to the item, based on identifying that the at least one object in the image corresponds to the item, obtain information of at least one visual object, and display the at least one visual object superimposed on the image associating the at least one object with the at least one visual object, on the display.
Abstract:
An electronic device includes a charging circuitry; a communication circuitry; a display; a processor; and a memory configured to store instructions that, when executed by the processor, cause the processor to: receive information regarding a remaining capacity of a rechargeable battery of a stylus related to the electronic device from the stylus by using the communication circuitry; based on it being identified that the remaining capacity of the battery is less than a reference value, display a first indication for guiding that charging of the battery is required by using the display; and, in response to it being identified that the stylus contacts the display while displaying the first indication, provide power for charging the battery by using the charging circuitry to the stylus, and to change the first indication to a second indication for indicating that the battery is being charged by using the display.
Abstract:
A display panel is provided. The display panel includes a glass, an inorganic light emitting device included in a sub pixel of the display panel, and a driving circuit disposed between the glass and the inorganic light emitting device, and configured to provide a driving current of which an amplitude and a pulse width are controlled together to the inorganic light emitting device. The inorganic light emitting device is mounted on the driving circuit and electrically connected to the driving circuit.
Abstract:
A method of outputting a screen image in an electronic device is provided. The method includes outputting a screen image of an electronic device as a projected screen image through a projector when a projector application is executed, measuring a distance between the electronic device and the projected screen image, generating a combined screen image by setting the number of screen images to be displayed according to the measured distance, and then outputting the combined screen image on the projected screen image through the projector.
Abstract:
A light emitting diode (LED) panel is provided. The LED panel includes a thin-film transistor (TFT) backplane which includes an insulator film disposed on a top surface of a substrate, a plurality of organic films disposed on a top surface of the insulator film, and pixel electrodes disposed on a top surface of each of the plurality of organic films. The LED panel further includes a plurality of LEDs respectively bonded to the pixel electrodes disposed on the top surface of each of the plurality of organic films, wherein the plurality of organic films has the different heights according to a type of each of the plurality of LEDs respectively bonded to the pixel electrodes disposed on the top surface of each of the plurality of organic films.
Abstract:
A display panel is disclosed. The disclosed display panel includes a thin film transistor substrate, a plurality of micro LEDs arranged on one surface of the thin film transistor substrate, a plurality of first connection pads disposed on the one surface of the thin film transistor substrate, a plurality of second connection pads disposed on the other surface of the thin film transistor substrate that faces the one surface, and a plurality of connection wirings disposed on a side surface of the thin film transistor substrate for electrically connecting each of the plurality of first connection pads and the plurality of second connection pads, wherein at least one of an edge region on the one surface and an edge region on the other surface of the thin film transistor substrate includes a cutting area which is cut in an inward direction of the thin film transistor substrate.
Abstract:
Certain embodiments include an electronic device comprising a housing, a touchscreen display viewable through a portion of the housing, at least one processor disposed inside the housing and operatively connected with the touchscreen display; and a memory disposed within the housing and operatively connected with the processor, wherein the memory stores instructions that, when executed, cause the at least one processor to perform a plurality of operations, the plurality of operations comprising displaying a first augmented reality (AR) emoji on a window capable of receiving at least one first stroke input, through the touchscreen display, receiving the at least one first stroke input while displaying the first AR emoji on the window, and displaying a second AR emoji, based at least partially on a position and a shape of the at least one first stroke input.
Abstract:
A display panel is provided. In the display panel, a plurality of pixels respectively including a plurality of sub pixels are arranged in a matrix form on a glass. Each of the plurality of sub pixels includes a driving circuit disposed on the glass and configured to receive a pulse amplitude modulation (PAM) data voltage and a pulse width modulation (PWM) data voltage, and an inorganic light emitting device mounted on the driving circuit and configured to be electrically connected to the driving circuit, and to emit a light based on a driving current provided from the driving circuit. The PAM data voltage is applied at once to the plurality of pixels included in the display panel. The driving circuit is configured to control a grayscale of a light emitted by the inorganic light emitting device by controlling a pulse width of a driving current having an amplitude corresponding to the applied PAM data voltage based on the applied PWM data voltage.