Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and apparatus for transmitting/receiving Channel State Information (CSI) is provided for use in a Full Dimensional Multiple Input Multiple Output (FD-MIMO) system. A channel state information (CSI) reception for a base station according to the present disclosure for use in a wireless communication system includes transmitting CSI process configuration information to a terminal, transmitting a CSI Reference Signal (CSI-RS) to the terminal based on the CSI process configuration information, and receiving the CSI generated based on CSI-RS measurement result from the terminal, wherein the CSI process configuration information is configured to measure channel states of horizontal and vertical antenna arrays, the CSI includes a joint Channel Quality Indicator (CQI), and the joint CQI is determined based on the CQIs for the horizontal and vertical antennas arrays.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a data rate higher than that of the 4G system. A method by a terminal in a wireless communication system according to the present disclosure includes receiving a first message comprising first information indicating a number of symbols in an uplink pilot time slot (UpPTS) region, identifying at least one symbol for transmitting a sounding reference signal (SRS) based on the first information, and transmitting the SRS.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure relates to transmission of a reference signal in a wireless communication system, and an operation method of a terminal comprises the steps of: receiving control information for reference signals from a base station, and receiving the reference signals according to the control information. Further, embodiments of the present disclosure also differ from the embodiment described above.
Abstract:
For converging a 5th-Generation (5G) communication system and supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), a channel state information (CSI) acquisition method includes transmitting CSI configuration information to a terminal, selecting a beam for transmitting a beamformed CSI reference signal (BF-CSI-RS) to the terminal, transmitting the BF-CSI-RS to the terminal using the selected beam, and notifying the terminal of a beamforming update. A base station for acquiring CSI in a mobile communication system includes a transceiver configured to transmit and receive signals, and a controller configured to control the transceiver to transmit CSI configuration information to a terminal, to select a beam for transmitting a BF-CSI-RS to the terminal, to transmit the BF-CSI-RS to the terminal using the selected beam, and to notify the terminal of a beamforming update.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to transmission of a reference signal in a wireless communication system, and an operation method of a terminal comprises the steps of: receiving control information for reference signals from a base station; and receiving the reference signals according to the control information. Further, the present invention also comprises embodiments different from the embodiment described above.
Abstract:
A method and a device for transmitting and receiving a signal on the basis of multiple antennas are provided.A transmitting device may include a radio frequency (RF) module transmitting a quadrature amplitude modulation (QAM) signal of a first symbol corresponding to a hybrid frequency shift keying and quadrature amplitude modulation (FQAM) mode and transmitting a QAM signal of a second symbol corresponding to a QAM mode through a second antenna; and a modulation module mapping the QAM signal of the first symbol to one frequency tone among the preset number of frequency tones according to a frequency shift keying (FSK) signal of the first symbol and mapping the second symbol to the frequency tone to which the first symbol is mapped.