Abstract:
Methods are provided for reservoir analysis. In some embodiments, a reservoir may be analyzed by obtaining abundance ratios at a first measurement station and a second measurement station and determining an abundance ratio trend. Abundance ratios at a third measurement station may be obtained and plotted versus depth with the previously obtained abundance ratios. A change in the abundance ratio trend may be identified and result in further investigation of the reservoir. If the abundance ratio is unchanged, additional abundance ratios may be obtained and plotted versus depth to further evaluate the abundance ratio trend. Methods for reservoir analysis using fluid predictions with and without offset well information are also provided.
Abstract:
A method for monitoring oil based mud filtrate contamination is provided including steps of analytically dividing a fluid stream into two parts, determining a gas/oil ratio for a native fluid determining an apparent gas/oil ratio for the contaminated fluid and determining on a volume fraction, an oil based contamination level based upon the gas/oil ratio for the native fluid and the apparent gas/oil ratio for the contaminated fluid.
Abstract:
A method for detection of permeability anisotropy, having steps of positioning a formation testing tool, conducting a series of three flow tests with the testing tool wherein a first test is a four drain flow test, a second test is a pair of opposite drains flowing on diametrically opposite sides of the formation testing tool and a third test is a second pair of opposite drains flowing on opposite drains different than the second test; determining one of horizontal permeability and horizontal mobility, determining one of orthogonal components of horizontal permeability and horizontal mobility based on the measured flow response and determining a direction of the orthogonal components of the horizontal permeability or horizontal mobility with respect to the orientation of the formation testing tool based on a measured flow response.
Abstract:
The present disclosure relates to systems and methods for determining an integrity of a sample chamber. In certain embodiments, formation fluid is collected from a subterranean formation within a sample chamber disposed in a downhole tool, the downhole tool is withdrawn from a wellbore, an estimated surface pressure of the collected formation fluid is determined, the estimated surface pressure of the collected formation fluid is compared with an actual surface pressure of the sample chamber, and the integrity of the sample chamber is determined based on the comparison of the estimated surface pressure and the actual surface pressure.
Abstract:
A method includes operating a downhole acquisition tool in a wellbore in a geological formation. The wellbore or the geological formation, or both contains a fluid that includes a native reservoir fluid of the geological formation and a contaminant. The method also includes receiving a portion of the fluid into the downhole acquisition tool, measuring a fluid property of the portion of the fluid using the downhole acquisition tool, and using the processor to estimate a fluid property of the native reservoir fluid based on the measured fluid property of the portion of the fluid and a regression model that may predict an asymptote of a growth curve. The asymptote corresponds to the estimated fluid property of the native formation fluid, and the regression model includes a geometric fitting model other than a power-law model.
Abstract:
A downhole tool is operated to pump fluid from a subterranean formation while obtaining fluid property measurements pertaining to the pumped fluid. The downhole tool is in communication with surface equipment located at the wellsite surface. The downhole tool and/or surface equipment is operated to estimate a first linear, exponential, logarithmic, and/or other relationship between compressibility and pressure of the pumped fluid based on the fluid property measurements. The downhole tool and/or surface equipment may also be operated to estimate a second linear, exponential, logarithmic, and/or other relationship between formation volume factor and pressure of the pumped fluid based on the first relationship. The downhole tool and/or surface equipment may also be operated to measure and correct optical density of the pumped fluid based on the first relationship.
Abstract:
Methods and apparatus for operating a downhole tool within a wellbore adjacent a subterranean formation to pump contaminated fluid from the formation into the downhole tool while measuring first and second fluid properties of the contaminated fluid. The contaminated fluid comprises native fluid from the formation and a contaminant. The downhole tool is in communication with surface equipment located at surface. The downhole tool and/or surface equipment is operated to estimate a formation volume factor of the contaminated fluid based on at least one of the first and second fluid properties of the contaminated fluid. A linear relationship is then estimated between the first fluid property and a function that relates the first fluid property to the second fluid property and the estimated formation volume factor of the contaminated fluid. A fluid property of the contaminant is then estimated based on the estimated linear relationship.
Abstract:
Implementations of the present disclosure relate to apparatuses, systems, and methods for determining when a well cleanup process has established developed flow and then extrapolating out modeled fluid parameter values to determine parameter values for a formation fluid. The model fluid parameter values may be modeled using a power law function having a specified exponent value.
Abstract:
Apparatus and methods for obtaining initial settings of station-specific parameters descriptive of wellbore/formation properties specific to downhole pressure test stations, and obtaining initial settings of station-shared parameters descriptive of petrophysical properties of petrophysically unique formation zones. A pressure transient model of the zones is obtained by regression utilizing the pressure data of each station and the initial settings of the station-specific and station-shared parameters. The regression analytically determines a model value of at least one of the station-specific parameters and the station-shared parameters.
Abstract:
An inflatable packer assembly configured to be conveyed within a wellbore. The inflatable packer assembly includes a mandrel having a flowline, a first packer ring slidably connected with the mandrel, a second packer ring fixedly connected with the mandrel, a latching mechanism fluidly connected with the flowline, and an inflatable packer fluidly connected with the flowline. The inflatable packer may be disposed around the mandrel and sealingly connected with the first and second packer rings. The inflatable packer may be operable to expand against a sidewall of the wellbore upon receiving a fluid from the flowline. The latching mechanism may be operable to limit movement of the first packer ring with respect to the mandrel, and permit the movement of the first packer ring with respect to the mandrel upon being actuated by the fluid from the flowline.