Abstract:
Provided is an oscillation stop detection circuit having low current consumption, which is capable of detecting stop of oscillation regardless of whether an input signal stops at High or Low and thereby accurately measuring an oscillation stop detection period. The oscillation stop detection circuit includes: a pulse generation circuit for outputting a one-shot pulse in synchronization with an oscillation signal input from an input terminal; a capacitor including one terminal connected to a first power supply terminal and another terminal connected to an output terminal; a constant current circuit connected between the first power supply terminal and the another terminal of the capacitor; and a switch circuit connected between an output terminal of the pulse generation circuit and the another terminal of the capacitor, for connecting the another terminal of the capacitor to a second power supply terminal based on the one-shot pulse.
Abstract:
To provide a voltage detection circuit in which the influence on a detection voltage by semiconductor manufacturing variations is small and which is small in current consumption. A voltage detection circuit is provided which detects a voltage, based on an output signal of a detection circuit and outputs a detection signal. The detection circuit includes a first MOS transistor unit which allows a first current to flow, a second MOS transistor unit which allows a second current to flow, and a current voltage conversion unit which converts each of the first current and the second current into a voltage and outputs the same as the detection signal. A voltage characteristic of the first current and a voltage characteristic of the second current are configured so as to be crossed with each other at a predetermined voltage.
Abstract:
Provided is a data readout circuit capable of, even when a high voltage is applied during data read-out operation, preventing erroneous writing of the data and reading out the data correctly. The data readout circuit includes: a non-volatile storage element; a latch circuit including: an input inverter; an output inverter; and a MOS transistor; a first MOS transistor connected between the non-volatile storage element and the latch circuit; a second MOS transistor connected between the latch circuit and the first power supply terminal; a first bias circuit configured to bias a gate of the first MOS transistor; and a second bias circuit configured to bias the MOS transistor in the latch circuit, each of the first bias circuit and the second bias circuit being configured to output a predetermined bias voltage when the data in the non-volatile storage element is read out.
Abstract:
Provided is a readout circuit capable of detecting inversion of retained data caused by a noise, such as static electricity. The readout circuit is configured to retain opposing data in a first latch circuit and a second latch circuit in a readout period so as to be capable of detecting an anomaly of the retained data by making use of the fact that the data in the first latch circuit and the second latch circuit are inverted in the same direction due to a noise, such as static electricity.
Abstract:
The analog electronic watch includes: a crystal oscillator; an oscillator circuit; a frequency divider circuit; an output control circuit; a constant voltage circuit; and a cell. The constant voltage circuit and the output control circuit are powered from the cell. The oscillator circuit and the frequency divider circuit are powered from the constant voltage circuit. The constant voltage circuit is capable of outputting a first constant voltage and a second constant voltage in a switchable manner. The second constant voltage is a voltage which is equal to or lower than a cell voltage. The first constant voltage is a voltage which is smaller than the second constant voltage. The constant voltage is switched to the second constant voltage in a period of outputting the motor drive pulse.