Abstract:
A positive electrode active material, which has higher capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. The positive electrode active material includes lithium, cobalt, magnesium, oxygen, and fluorine; when a pattern obtained by powder X ray diffraction using a CuKα1 ray is subjected to Rietveld analysis, the positive electrode active material has a crystal structure having a space group R-3m, a lattice constant of an a-axis is greater than 2.814×10(−10th power) m and less than 2.817×10(−10th power) m, and a lattice constant of a c-axis is greater than 14.05×10(−10th power) m and less than 14.07×10(−10th power) m; and in analysis by X-ray photoelectron spectroscopy, a relative value of a magnesium concentration is higher than or equal to 1.6 and lower than or equal to 6.0 with the cobalt concentration regarded as 1.
Abstract:
A positive electrode active material, which has higher capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. The positive electrode active material includes lithium, cobalt, magnesium, oxygen, and fluorine; when a pattern obtained by powder X ray diffraction using a CuKα1 ray is subjected to Rietveld analysis, the positive electrode active material has a crystal structure having a space group R-3m, a lattice constant of an a-axis is greater than 2.814×10(−10th power) m and less than 2.817×10(−10th power) m, and a lattice constant of a c-axis is greater than 14.05×10(−10th power) m and less than 14.07×10(−10th power) m; and in analysis by X-ray photoelectron spectroscopy, a relative value of a magnesium concentration is higher than or equal to 1.6 and lower than or equal to 6.0 with the cobalt concentration regarded as 1.
Abstract:
In manufacture of a storage battery electrode containing graphene as a conductive additive, the efficiency of reduction of graphene oxide under mild conditions is increased, and cycle characteristics and rate characteristics of a storage battery are improved. Provided is a manufacturing method of a storage battery electrode. In the manufacturing method, a first mixture containing an active material, graphene oxide, and a solvent is formed; a reducing agent is added to the first mixture and the graphene oxide is reduced to form a second mixture; a binder is mixed with the second mixture to form a third mixture; and the third mixture is applied to a current collector and the solvent is evaporated to form an active material layer.
Abstract:
A lithium-ion secondary battery with high capacity is provided. Alternatively, a lithium-ion secondary battery with unproved cycle characteristics is provided. To achieve this, an active material including a particle having a cleavage plane and a layer containing carbon covering at least part of the cleavage plane is provided. The particle having the cleavage plane contains lithium, manganese, nickel, and oxygen. The layer containing carbon preferably contains graphene. When a lithium-ion secondary battery is fabricated using an electrode including the particle having the cleavage plane at least part of which is covered with the layer containing carbon as an active material, the discharge capacity can be increased and the cycle characteristics can be improved.
Abstract:
Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
Abstract:
An object is to provide a storage battery using materials for an electrode active material without waste. Another object is to provide an electrode active material with an appropriate compounding ratio. A lithium-ion storage battery includes a positive electrode, a negative electrode, and an electrolytic solution therebetween. The positive electrode includes a positive electrode current collector and a positive electrode active material layer. The positive electrode active material layer includes a first positive electrode active material and a second positive electrode active material. The charge capacity of the first positive electrode active material is higher than the discharge capacity thereof. The discharge capacity of the second positive electrode active material is higher than the charge capacity thereof. The first positive electrode active material may be a lithium-manganese composite oxide, and the second positive electrode active material may be a lithium-manganese oxide with a spinel crystal structure.
Abstract:
The amount of lithium ions that can be received and released in and from a positive electrode active material is increased, and high capacity and high energy density of a secondary battery are achieved. Provided is a lithium-manganese composite oxide represented by LixMnyMzOw, where M is a metal element other than Li and Mn, or Si or P, and y, z, and w satisfy 0≦x/(y+z) 0, z>0, 0.26≦(y+z)/w
Abstract:
In manufacture of a storage battery electrode containing graphene as a conductive additive, the efficiency of reduction of graphene oxide under mild conditions is increased, and cycle characteristics and rate characteristics of a storage battery are improved. Provided is a manufacturing method of a storage battery electrode. In the manufacturing method, a first mixture containing an active material, graphene oxide, and a solvent is formed; a reducing agent is added to the first mixture and the graphene oxide is reduced to form a second mixture; a binder is mixed with the second mixture to form a third mixture; and the third mixture is applied to a current collector and the solvent is evaporated to form an active material layer.
Abstract:
To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
Abstract:
A positive electrode active material that has high capacity and excellent charge and discharge cycle performance for a secondary battery is provided. A positive electrode active material that inhibits a decrease in capacity in charge and discharge cycles is provided. A high-capacity secondary battery is provided. A secondary battery with excellent charge and discharge characteristics is provided. A highly safe or reliable secondary battery is provided. A positive electrode active material contains lithium, cobalt, oxygen, and aluminum and has a crystal structure belonging to a space group R-3m when Rietveld analysis is performed on a pattern obtained by powder X-ray diffraction. In analysis by X-ray photoelectron spectroscopy, the number of aluminum atoms is less than or equal to 0.2 times the number of cobalt atoms.