Abstract:
Interface contact between a polymer electrolyte and an active material layer is improved. A secondary battery with improved discharge capacity is provided. The secondary battery includes a positive electrode, a negative electrode, and an electrolyte layer between the positive electrode and the negative electrode. The positive electrode includes a positive electrode active material, a first lithium-ion conductive polymer, a first lithium salt, and a conductive material over a positive electrode current collector. The electrolyte layer includes a second lithium-ion conductive polymer and a second lithium salt. The conductive material is preferably graphene. The negative electrode preferably includes a negative electrode active material, a third lithium-ion conductive polymer, a third lithium salt, and a second conductive material over a negative electrode current collector.
Abstract:
A secondary battery with excellent cycle performance is provided. The secondary battery is an all-solid-state battery including a positive electrode current collector layer, a base film, a positive electrode active material layer, a buffer layer, and a solid electrolyte layer. The base film contains titanium nitride. The positive electrode active material layer contains lithium cobalt oxide. The buffer layer contains titanium oxide. The solid electrolyte layer contains a titanium compound. By using titanium oxide for the buffer layer, a side reaction between the positive electrode active material layer and the solid electrolyte layer can be suppressed, and cycle performance can be improved.
Abstract:
A composite material which includes an organic compound and an inorganic compound and has a high carrier-transport property is provided. A composite material having a good property of carrier injection into an organic compound is provided. A composite material in which light absorption due to charge-transfer interaction is unlikely to occur is provided. A composite material having a high visible-light-transmitting property is provided. A composite material including a hydrocarbon compound and an inorganic compound exhibiting an electron-accepting property with respect to the hydrocarbon compound is provided. The hydrocarbon compound has a substituent bonded to a naphthalene skeleton, a phenanthrene skeleton, or a triphenylene skeleton and has a molecular weight of 350 to 2000, and the substituent has one or more rings selected from a benzene ring, a naphthalene ring, a phenanthrene ring, and a triphenylene ring.
Abstract:
A lithium-ion secondary battery with high capacity and excellent charge and discharge cycle performance is provided. A secondary battery with high capacity is provided. A secondary battery with excellent charge and discharge characteristics is provided. A secondary battery in which a reduction in capacity is inhibited even when a state being charged with a high voltage is held for a long time is provided. A secondary battery includes a positive electrode, a negative electrode, and an electrolyte, and the amount of moisture in the electrolyte is less than 1000 ppm.
Abstract:
A lithium ion battery having excellent charge characteristics and discharge characteristics even in a low-temperature environment is provided. The lithium ion battery includes a positive electrode active material and an electrolyte. The positive electrode active material contains cobalt, oxygen, magnesium, aluminum, and nickel. The electrolyte contains lithium hexafluorophosphate, ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate. Second discharge capacity of the lithium ion battery is higher than or equal to 70% of first discharge capacity. The first discharge capacity is obtained by performing first charge and first discharge at 20° C., and the second discharge capacity is obtained by performing second charge and second discharge at −40° C. The first discharge and the second discharge are constant current discharge with 20 mA/g per positive electrode active material weight.
Abstract:
According to one embodiment of the present invention, a secondary battery that can be used at a wide range of temperatures and is less likely to be influenced by an environmental temperature is provided. Furthermore, a secondary battery with high safety is provided. An electrolyte obtained by mixing an acyclic ester having high temperature characteristics with a fluorinated carbonic ester at 5 vol. % or higher, preferably 20 vol. % or higher, is used for the purpose of reducing interface resistance between an electrode and an electrolyte, whereby a secondary battery capable of operating at a wide range of temperatures, specifically, at temperatures higher than or equal to −40° C. and lower than or equal to 150° C., preferably higher than or equal to −40° C. and lower than or equal to 85° C. can be achieved.
Abstract:
Provided is a light-emitting element with high emission efficiency including a fluorescent material as a light-emitting substance. In a light-emitting element including a pair of electrodes and an EL layer between the pair of electrodes, a delayed fluorescence component due to triplet-triplet annihilation accounts for 20% or more of light emitted from the EL layer, and the light has at least one emission spectrum peak in the blue wavelength range. The EL layer includes an organic compound in which an energy difference between the lowest singlet excited energy level and the lowest triplet excited energy level is 0.5 eV or more. The EL layer includes a benzo[a]anthracene compound.
Abstract:
An object is to provide a nonaqueous solvent, a secondary battery, or a vehicle having a wide usable temperature range and high heat resistance. The nonaqueous solvent of the present invention contains an ionic liquid at greater than or equal to 50 vol % and less than or equal to 95 vol % and a fluorinated cyclic carbonate, and the ionic liquid contains an imidazolium cation. The nonaqueous solvent of the present invention has low viscosity at low temperatures and high heat resistance, thereby having a wide usable temperature range.
Abstract:
A storage battery that is less likely to be affected by the ambient temperature is provided. A storage battery that can be charged and discharged at low temperatures is provided. In the storage battery, a secondary battery that can be charged and discharged at low temperatures is provided adjacent to a general secondary battery. The storage battery having such a structure can use, as an internal heat source in a low temperature environment, heat generated by charging and discharging of the secondary battery that can be charged and discharged at low temperatures. Specifically, the storage battery includes a first lithium-ion secondary battery and a second lithium-ion secondary battery adjacent to each other. The first lithium-ion secondary battery contains at least one of an ionic liquid, a molecular crystalline electrolyte, a semi-solid-state electrolyte, an all-solid-state electrolyte, and lithium titanate. The second lithium-ion secondary battery contains an organic electrolyte solution.
Abstract:
Provided is a novel aromatic amine derivative represented by General Formula (G1) below. (In the formula, A represents oxygen or sulfur, and R1 to R7 individually represent any of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group. In addition, α1 and α2 individually represent a substituted or unsubstituted phenylene group. Further, Ar1 represents a substituted or unsubstituted condensed aromatic hydrocarbon having 14 to 18 carbon atoms included in a ring. Further, Ar2 represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms included in a ring. Further, j and n are individually 0 or 1, and p is 1 or 2.)