Abstract:
A secondary battery that can inhibit degradation of an electrode is provided. A flexible secondary battery is provided. A flexible secondary battery includes a positive electrode, a negative electrode, and an exterior body surrounding the positive electrode and the negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material layer provided over the positive electrode current collector. The negative electrode includes a negative electrode current collector and a negative electrode active material layer provided over the negative electrode current collector. One or both of the positive electrode current collector and the negative electrode current collector have rubber elasticity.
Abstract:
A display device including a peripheral circuit portion with high operation stability. The display device includes a first substrate and a second substrate. A first insulating layer is on a first plane of the first substrate, and a second insulating layer is on a first plane of the second substrate. An area of the first plane of the first substrate is the same as an area of the first plane of the second substrate. The first plane of the first substrate and the first plane of the second substrate face each other. A bonding layer is between the first insulating layer and the second insulating layer. A protection film is in contact with the first substrate, the first insulating layer, the bonding layer, the second insulating layer, and the second substrate.
Abstract:
A display device suitable for application is provided. A display device capable of displaying images with high quality and with low power consumption is provided. The display device includes a first display portion, a second display portion, a non-display portion, a first substrate, and a second substrate. The first substrate and the second substrate are provided to face each other with the first display portion, the second display portion, and the non-display portion provided therebetween. The first display portion and the second display portion are provided apart from each other with the non-display portion therebetween. A plurality of liquid crystal elements are arranged in a matrix in the first display portion. A plurality of light-emitting elements are arranged in a matrix in the second display portion. The liquid crystal element reflects light to the second substrate side. The light-emitting element emits light to the second substrate side.
Abstract:
An increase in fabricating cost of a display module including a touch sensor is suppressed. A display device which includes a first substrate, a second substrate, and liquid crystal interposed between the first substrate and the second substrate includes a display portion. The display portion includes a sensor unit and a pixel. The sensor unit includes a first transistor, a first conductive film electrically connected to a gate of the first transistor, and a second conductive film. At least part of the first conductive film overlaps with at least part of the second conductive film. The pixel includes a second transistor, and a pixel electrode electrically connected to the second transistor. At least part of the pixel electrode overlaps with at least part of the first conductive film.
Abstract:
A display device that can switch between normal display and see-through display is provided. Visibility in see-through display is improved. A liquid crystal element overlaps with a light-emitting element. The light-emitting element, a transistor, and the like overlapping with the liquid crystal element transmit visible light. When the liquid crystal element blocks external light, an image is displayed with the light-emitting element. When the liquid crystal element transmits external light, an image displayed with the light-emitting element is superimposed on a transmission image through the liquid crystal element.
Abstract:
A liquid crystal display device is provided, which includes a thin film transistor including an oxide semiconductor layer, a first electrode layer, a second electrode layer having an opening, a light-transmitting chromatic-color resin layer between the thin film transistor and the second electrode layer, and a liquid crystal layer. One of the first electrode layer and the second electrode layer is a pixel electrode layer which is electrically connected to the thin film transistor, and the other of the first electrode layer and the second electrode layer is a common electrode layer. The light-transmitting chromatic-color resin layer is overlapped with the pixel electrode layer and the oxide semiconductor layer of the thin film transistor.
Abstract:
An increase in fabricating cost of a display module including a touch sensor is suppressed. A display device which includes a first substrate, a second substrate, and liquid crystal interposed between the first substrate and the second substrate includes a display portion. The display portion includes a sensor unit and a pixel. The sensor unit includes a first transistor, a first conductive film electrically connected to a gate of the first transistor, and a second conductive film. At least part of the first conductive film overlaps with at least part of the second conductive film. The pixel includes a second transistor, and a pixel electrode electrically connected to the second transistor. At least part of the pixel electrode overlaps with at least part of the first conductive film.
Abstract:
To provide a display device or the like that enables stable curing of a resin. The display device includes a first circuit and a second circuit over the same substrate. The first circuit has a function of performing display; the second circuit has a function of driving the first circuit; the second circuit includes a transistor and a capacitor; the transistor includes an oxide semiconductor layer over a first insulating layer; the capacitor includes a first conductive layer, a second insulating layer, and a second conductive layer; the first conductive layer is positioned over the first insulating layer; one of a source and a drain of the transistor is electrically connected to the second conductive layer; and the first conductive layer and the oxide semiconductor layer include the same metal element.
Abstract:
A novel display panel that can be used as a reflective display panel in an environment with strong external light and as a self-luminous display panel in a dim environment, for example and that has low power consumption and is highly convenient or reliable is provided. The display panel includes a pixel and a substrate that supports the pixel. The pixel includes a first display element (e.g., a reflective liquid crystal element) that includes a reflective film having an opening as a first conductive film and a second display element (e.g., an organic EL element) that emits light to the opening.
Abstract:
A display device in which a peripheral circuit portion has high operation stability is provided. The display device includes a first substrate and a second substrate. A first insulating layer is provided over a first surface of the first substrate. A second insulating layer is provided over a first surface of the second substrate. The first surface of the first substrate and the first surface of the second substrate face each other. An adhesive layer is provided between the first insulating layer and the second insulating layer. A protective film in contact with the first substrate, the first insulating layer, the adhesive layer, the second insulating layer, and the second substrate is formed in the vicinity of a peripheral portion of the first substrate and the second substrate.