Abstract:
A novel organic compound represented by General Formula (G1) is provided. In General Formula (G1), X1 and X2 each independently represent a secondary or tertiary alkyl group having 3 to 6 carbon atoms and having a branched carbon atom which is bonded to a phenyl group. In addition, Ar1 represents a substituted or unsubstituted condensed aromatic ring skeleton having 10 to 60 carbon atoms and composed of two or more rings or a substituted or unsubstituted condensed heteroaromatic ring skeleton having 8 to 60 carbon atoms and composed of two or more rings. Furthermore, Ar2 represents a substituted or unsubstituted aryl group having 6 to 25 carbon atoms. Moreover, n represents any of 1 to 3, and in the case where n is 2 or more, two or more groups bonded to Ar1 may be identical or different.
Abstract:
Provided is a novel light-emitting element, a light-emitting element with a long lifetime, or a light-emitting element with high emission efficiency. The light-emitting element includes an EL layer between a pair of electrodes. The EL layer includes at least a light-emitting layer containing a fluorescent substance and a host material, a first electron-transport layer containing a first electron-transport material, and a second electron-transport layer containing a second electron-transport material, which are in contact with each other and in this order. The LUMO level of each of the host material and the second electron-transport material is higher than the LUMO level of the first electron-transport material.
Abstract:
A light-emitting element which includes a plurality of light-emitting layers between a pair of electrodes and has low driving voltage and high emission efficiency is provided. A light-emitting element including first to third light-emitting layers between a cathode and an anode is provided. The first light-emitting layer includes a first phosphorescent material and a first electron-transport material; the second light-emitting layer includes a second phosphorescent material and a second electron-transport material; the third light-emitting layer includes a fluorescent material and a third electron-transport material; the first to third light-emitting elements are provided in contact with an electron-transport layer positioned on a cathode side; and a triplet excitation energy level of a material included in the electron-transport layer is lower than triplet excitation energy levels of the first electron-transport material and the second electron-transport material.
Abstract:
An object is to provide a highly reliable display unit having a function of sensing light. The display unit includes a light-receiving device and a light-emitting device. The light-receiving device includes an active layer between a pair of electrodes. The light-emitting device includes a hole-injection layer, a light-emitting layer, and an electron-transport layer between a pair of electrodes. The light-receiving device and the light-emitting device share one of the electrodes, and may further share another common layer between the pair of electrodes. The hole-injection layer is in contact with an anode and contains a first compound and a second compound. The electron-transport property of the electron-transport layer is low; hence, the light-emitting layer is less likely to have excess electrons. Here, the first compound is the material having a property of accepting electrons from the second compound.
Abstract:
An object is to provide a novel organic compound. Another object is to provide a novel light-emitting device. Another object is to provide a light-emitting device with favorable emission efficiency. Another object is to provide a light-emitting device with a favorable lifetime. Another object is to provide a light-emitting device with a low driving voltage. A dibenzo[c,g]carbazole derivative represented by the following general formula (G1) and a light-emitting device using it are provided. Note that at least one of R11 to R22 represents a substituent that has 14 to 60 carbon atoms in total and contains a condensed tricyclic to hexacyclic aromatic hydrocarbon skeleton, and the others independently represent any of hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 25 carbon atoms.
Abstract:
A light-emitting device, an electronic device, or a lighting device with low power consumption and high reliability is provided. The light-emitting device includes a first light-emitting element, a second light-emitting element, a third light-emitting element, and a fourth light-emitting element. The first to fourth light-emitting elements include the same EL layer between an anode and a cathode. The EL layer includes a first light-emitting layer and a second light-emitting layer. The first light-emitting layer contains a fluorescent substance. The peak wavelength of an emission spectrum of the fluorescent substance in a toluene solution of the fluorescent substance is 440 nm to 460 nm, preferably 440 nm to 455 nm. The second light-emitting layer contains a phosphorescent substance. The first light-emitting element exhibits blue emission. The second light-emitting element exhibits green emission. The third light-emitting element exhibits red emission. The fourth light-emitting element exhibits yellow emission.
Abstract:
In an organic compound, two groups each including a benzonaphthofuranylamine skeleton are bonded to a central skeleton including a fluorene skeleton. The organic compound emits favorable blue light. Furthermore, the organic compound has a high hole-transport property.
Abstract:
A light-emitting element which includes a plurality of light-emitting layers between a pair of electrodes and has low driving voltage and high emission efficiency is provided. A light-emitting element including first to third light-emitting layers between a cathode and an anode is provided. The first light-emitting layer includes a first phosphorescent material and a first electron-transport material; the second light-emitting layer includes a second phosphorescent material and a second electron-transport material; the third light-emitting layer includes a fluorescent material and a third electron-transport material; the first to third light-emitting elements are provided in contact with an electron-transport layer positioned on a cathode side; and a triplet excitation energy level of a material included in the electron-transport layer is lower than triplet excitation energy levels of the first electron-transport material and the second electron-transport material.
Abstract:
An organic compound that emits blue light with high color purity and has a long lifetime is provided as a novel substance. The organic compound is a fluorescent organic compound having a structure in which benzonaphthofuranylamine is bonded to the 1-position and the 6-position of a pyrene skeleton.
Abstract:
A light-emitting element which includes a plurality of light-emitting layers between a pair of electrodes and has low driving voltage and high emission efficiency is provided. A light-emitting element including first to third light-emitting layers between a cathode and an anode is provided. The first light-emitting layer includes a first phosphorescent material and a first electron-transport material; the second light-emitting layer includes a second phosphorescent material and a second electron-transport material; the third light-emitting layer includes a fluorescent material and a third electron-transport material; the first to third light-emitting elements are provided in contact with an electron-transport layer positioned on a cathode side; and a triplet excitation energy level of a material included in the electron-transport layer is lower than triplet excitation energy levels of the first electron-transport material and the second electron-transport material.