Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains at least a phosphorescent compound, a first organic compound (host material) having an electron-transport property, and a second organic compound (assist material) having a hole-transport property. The light-emitting layer has a stacked-layer structure including a first light-emitting layer and a second light-emitting layer, and the first light-emitting layer contains a higher proportion of the second organic compound than the second light-emitting layer. In the light-emitting layer (the first light-emitting layer and the second light-emitting layer), a combination of the first organic compound and the second organic compound forms an exciplex.
Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting layer is provided between a pair of electrodes. The light-emitting layer is a stack of a first light-emitting layer, which contains a first phosphorescent compound, a first organic compound having an electron-transport property, and a second organic compound having a hole-transport property and is provided on the anode side, and a second light-emitting layer, which contains at least a second phosphorescent compound and the first organic compound having an electron-transport property. A combination of the first organic compound and the second organic compound forms an exciplex.
Abstract:
A tandem light-emitting element in which generation of crosstalk can be suppressed even when the element is applied to a high-definition display is provided. In the tandem light-emitting element, a layer in contact the anode side of an intermediate layer contains 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline (abbreviation: NBPhen).
Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains at least a phosphorescent compound, a first organic compound (host material) having an electron-transport property, and a second organic compound (assist material) having a hole-transport property. The light-emitting layer has a stacked-layer structure including a first light-emitting layer and a second light-emitting layer, and the first light-emitting layer contains a higher proportion of the second organic compound than the second light-emitting layer. In the light-emitting layer (the first light-emitting layer and the second light-emitting layer), a combination of the first organic compound and the second organic compound forms an exciplex.
Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting layer is provided between a pair of electrodes. The light-emitting layer is a stack of a first light-emitting layer, which contains at least a first phosphorescent compound, a first organic compound having an electron-transport property, and a second organic compound having a hole-transport property and is provided on the anode side, and a second light-emitting layer, which contains at least a second phosphorescent compound and the first organic compound having an electron-transport property. A combination of the first organic compound and the second organic compound forms an exciplex.
Abstract:
A light-emitting device in which different electrodes in a work function are used in a first light-emitting element and a second light-emitting element are provided. A light-emitting device includes a first light-emitting element and a second light-emitting element. The first light-emitting element includes a first electrode, an EL layer, and a second electrode in this order. The second light-emitting element includes a third electrode, the EL layer, and the second electrode in this order. The EL layer includes a first light-emitting layer, a layer, and a second light-emitting layer in this order. The structure of the first light-emitting layer is different from the structure of the second light-emitting layer. The first light-emitting element and the second light-emitting element are different in a carrier-injection property.
Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains at least a phosphorescent compound, a first organic compound (host material) having an electron-transport property, and a second organic compound (assist material) having a hole-transport property. The light-emitting layer has a stacked-layer structure including a first light-emitting layer and a second light-emitting layer, and the first light-emitting layer contains a higher proportion of the second organic compound than the second light-emitting layer. In the light-emitting layer (the first light-emitting layer and the second light-emitting layer), a combination of the first organic compound and the second organic compound forms an exciplex.