Abstract:
A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element is provided which includes a light-emitting layer containing a phosphorescent compound, a first organic compound, and a second organic compound between a pair of electrodes, in which a combination of the first organic compound and the second organic compound forms an exciplex (excited complex). The light-emitting element transfers energy by utilizing an overlap between the emission spectrum of the exciplex and the absorption spectrum of the phosphorescent compound and thus has high energy transfer efficiency. Therefore, a light-emitting element having high external quantum efficiency can be obtained.
Abstract:
Objects of the present invention are to provide: a light-emitting element having a long lifetime and good emission efficiency and drive voltage. One embodiment of the invention is a light-emitting element including, between an anode and a cathode, at least a stack structure in which a first layer, a second layer, and a light-emitting layer are provided in order from the anode side. The first layer includes a first organic compound and an electron-accepting compound. The second layer includes a second organic compound having a HOMO level differing from the HOMO level of the first organic compound by from −0.2 eV to +0.2 eV. The light-emitting layer includes a third organic compound having a HOMO level differing from the HOMO level of the second organic compound by from −0.2 eV to +0.2 eV and a light-emitting substance having a hole-trapping property with respect to the third organic compound.
Abstract:
Objects of the present invention are to provide: a light-emitting element having a long lifetime and good emission efficiency and drive voltage. One embodiment of the invention is a light-emitting element including, between an anode and a cathode, at least a stack structure in which a first layer, a second layer, and a light-emitting layer are provided in order from the anode side. The first layer includes a first organic compound and an electron-accepting compound. The second layer includes a second organic compound having a HOMO level differing from the HOMO level of the first organic compound by from −0.2 eV to +0.2 eV. The light-emitting layer includes a third organic compound having a HOMO level differing from the HOMO level of the second organic compound by from −0.2 eV to +0.2 eV and a light-emitting substance having a hole-trapping property with respect to the third organic compound.
Abstract:
A light-emitting element with high emission efficiency and high reliability is provided. The light-emitting element includes a light-emitting layer containing a first organic compound, a second organic compound, and a guest material. The first organic compound has a nitrogen-containing six-membered heteroaromatic skeleton. In the light-emitting layer, the weight ratio of an organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the first organic compound is less than or equal to 0.03, or alternatively, the weight ratio of the organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the second organic compound is less than or equal to 0.01.
Abstract:
An organometallic complex that has high emission efficiency and high heat resistance and emits blue light is provided as a novel substance. In a light-emitting element including a light-emitting layer between a pair of electrodes, the light-emitting layer includes an organometallic complex, and the organometallic complex includes a central metal and two types of ligands coordinated to the central metal. One of the two types of ligands includes a triazole skeleton including nitrogen bonded to the central metal, and the other includes a nitrogen-containing five-membered heterocyclic skeleton including carbene carbon bonded to the central metal and nitrogen bonded to carbene carbon.
Abstract:
A light-emitting element having extremely high efficiency of approximately 25% is provided. The light-emitting element includes a light-emitting layer which contains a phosphorescent guest, an n-type host, and a p-type host, where the light-emitting layer is interposed between an n-type layer including the n-type host and a p-type layer including the p-type host, and where the n-type host and the p-type host are able to form an exciplex in the light-emitting layer. The light-emitting element exhibits an extremely high emission efficiency (power efficiency of 74.3 lm/W, external quantum efficiency of 24.5%, energy efficiency of 19.3%) at a low driving voltage (2.6 V) at which luminance of 1200 cd/m2 is attainable.
Abstract:
Provided is a light-emitting element which has an anode, a light-emitting layer over the anode, an electron-transport layer over and in contact with the light-emitting layer, an electron-injection layer over and in contact with the electron-transport layer, and a cathode over and in contact with the electron-injection layer. The light-emitting layer has an electron-transport property, and the electron-transport layer includes an anthracene derivative. The light-emitting layer further includes a phosphorescent substance. This device structure allows the formation of a highly efficient blue-emissive light-emitting element even though the phosphorescent substance has higher triplet energy than the anthracene derivative which directly contacts with the light-emitting layer.
Abstract:
A light-emitting element emitting phosphorescence and having high emission efficiency, in which a property of injecting holes to a light-emitting layer is increased, is provided. The light-emitting layer of the light-emitting element includes a first organic compound represented by the following general formula (G1) and a second organic compound which is a phosphorescent compound. The difference between the HOMO level of the first organic compound and the HOMO level of the second organic compound is lower than or equal to 0.3 eV.
Abstract:
Novel anthracene derivatives are provided. Further, a light-emitting element, a light-emitting device, and an electronic appliance each using the novel anthracene derivative are provided. Anthracene derivatives represented by general formulae (G11) and (G21) are provided. The anthracene derivatives represented by the general formulae (G11) and (G21) each emit blue light with high color purity and have a carrier-transporting property. Therefore, each of the anthracene derivatives represented by the general formulae (G11) and (G21) is suitable for use in a light-emitting element, a light-emitting device, and an electronic appliance.
Abstract:
A light-emitting element with high emission efficiency and high reliability is provided. The light-emitting element includes a light-emitting layer containing a first organic compound, a second organic compound, and a guest material. The first organic compound has a nitrogen-containing six-membered heteroaromatic skeleton. In the light-emitting layer, the weight ratio of an organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the first organic compound is less than or equal to 0.03, or alternatively, the weight ratio of the organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the second organic compound is less than or equal to 0.01.