Abstract:
Technology provided herein relates in part to non-invasive classification of one or more genetic copy number variations (CNVs) for a test sample. Technology provided herein is useful for classifying a genetic CNV for a sample as part of non-invasive pre-natal (NIPT) testing and oncology testing, for example.
Abstract:
Technology provided herein relates in part to methods, processes, machines and apparatuses for non-invasive assessment of genetic alterations. In particular, a method is provided for that includes obtaining a set of sequence reads. The sequence reads each include a single molecule barcode (SMB) sequence that is a non-random oligonucleotide sequence. The method further includes assigning the sequence reads to read groups according to a read group signature. The read group signature comprises an SMB sequence and a start and end position of a nucleic acid fragment from the circulating cell free sample nucleic acid. The sequence reads comprising start and end positions and an SMB sequence similar to the read group signature are assigned to a read group. The method further includes generating a consensus for each read group, and determining the presence or absence of a genetic alteration based on the consensus for each read group.
Abstract:
Technology provided herein relates in part to methods, processes, machines and apparatuses for non-invasive assessment of copy number alterations. In particular, a method is provided for determining presence or absence of a copy number alteration for a test subject. The method includes providing a set of sequence reads. The sequence reads may be obtained from circulating cell free sample nucleic acid from a test sample obtained from the test subject, and the circulating cell free sample nucleic acid may be captured by probe oligonucleotides under hybridization conditions. The method further includes determining a probe coverage quantification of the sequence reads for the probe oligonucleotides and determining the presence or absence of a copy number alteration in the circulating cell free sample nucleic acid based on the probe coverage quantification of the sequence reads for the probe oligonucleotides for the test sample.
Abstract:
Technology provided herein relates in part to non-invasive classification of one or more genetic copy number variations (CNVs) for a test sample. Technology provided herein is useful for classifying a genetic CNV for a sample as part of non-invasive pre-natal (NIPT) testing and oncology testing, for example.
Abstract:
Technology provided herein relates in part to non-invasive classification of one or more genetic copy number alterations (CNAs) for a test sample. Certain methods include sampling a quantification of sequence reads from parts of a genome, generating a confidence determination, and using the confidence determination to enhance classification. Technology provided herein is useful for classifying a genetic CNA for a sample as part of non-invasive pre-natal (NIPT) testing and oncology testing, for example.
Abstract:
Technology provided herein relates in part to methods, processes, machines and apparatuses for non-invasive assessment of genomic nucleic acid instability and genomic nucleic acid stability.