Abstract:
Provided herein are methods, processes and apparatuses for non-invasive assessment of genetic variations that make use of decision analyses. The decision analyses sometimes include segmentation analyses and/or odds ratio analyses.
Abstract:
Technology provided herein relates in part to methods, processes and apparatuses for non-invasive assessment of genetic variations. In particular the invention relates to methods and kits for detecting aneuploidy of a fetal chromosome by determining the amounts of differentially methylated regions in each of chromosomes 13, 18 and 21 in circulating cell-free nucleic acid from a human pregnant female.
Abstract:
Provided herein are methods, processes and apparatuses for determining the fraction of fetal nucleic acid in a test sample derived from a pregnant female with improved accuracy and/or precision. Also, provided herein are methods, processes and apparatuses for determining the presence or absence of a genetic variation in a fetus with improved accuracy and/or precision. Certain methods include using fetal fraction measurements for the determination of a fetal genetic variation.
Abstract:
Technology described herein pertains in part to diagnostic tests that make use of sequence reads generated by a sequencing process. In some embodiments, a component used to generate a chromosome representation can be based on counts of sequence reads not aligned to a reference genome.