Abstract:
The rectangular planar-type ICP (Inductively Coupled Plasma) antenna having a balanced ratio of a magnetic field and an electric potential is capable of improving uniformity of plasma as well as improving a density of plasma. The planar-type ICP antenna includes first and second antenna elements spirally shaped outwards from an end thereof, respectively. The ends of the fist and second antenna elements are interconnected by means of a grounded common terminal. A RF power source is connected to a powered common terminal for connecting first and second powered terminals that are the other ends of the first and second antenna elements. The first and second powered terminals are arranged in peripheral portions of the antenna and the grounded common terminal is arranged in a center portion of the antenna in order to compensate for a drop of plasma ion flux in a region to which power is applied.
Abstract:
A semiconductor device having a spiral electrode pattern and fabrication method thereof. The device includes an undoped semiconductor substrate, a first and a second probing pads formed on the substrate, and a pair of electrode fingers extending spirally toward a concentric center from the respective first and second probing pads and interdigitated with each other. The method includes the steps of, patterning an insulation layer on a semiconductor substrate in a spiral structure, depositing a metal layer on the substrate including the insulation layer but excluding the sides of the insulation layer, and etching the insulation layer using a wet etching technique.
Abstract:
The present invention provides a controlling apparatus for a skin resurfacing device performing a surgical procedure on a human skin with a surgical needle, including: a controller 20; a voltage regulator 50 configured to regulate a voltage supplied to the skin resurfacing device from a power supply 10 according to a control of the controller; and a starting switch 80 configured to turn on/off a supply of power between the voltage regulator and the skin resurfacing device, in which the controller controls the voltage regulator so as to output a preset jump start voltage to the skin resurfacing device every time the starting switch is turned on, if a jump start function that is a function of starting the skin resurfacing device is set by a starting voltage when an operating voltage of the skin resurfacing device is lower than the starting voltage of the skin resurfacing device at the time of the surgical procedure.
Abstract:
Provided are a substrate supporting unit and a substrate treating apparatus using the substrate supporting unit. The substrate supporting unit comprises a base plate and a supporting portion formed on the base plate. The supporting portion comprises two supporting rods and a plurality of supporting members. The two supporting rods extend in a predetermined direction to be separated from each other. The plurality of supporting members is disposed to be separated from each other in the predetermined direction. Each of the supporting members connects the supporting rods.
Abstract:
A flat lamp device includes lower and upper glass plates facing each other in parallel; spacers interposed between the plates to keep a distance therebetween; a cathode electrode singly formed over the entire upper surface of the lower glass plate; an insulation film formed on the cathode electrode; semiconductor films independently patterned on the insulation at intervals; a catalyst metal layer laminated on a buffer metal layer to improve adhesive force of the catalyst metal formed on the semiconductor films; carbon nano-tubes formed on the catalyst metal layer; a grid electrode installed above the carbon nano-tubes between the plates to guide electron emission from the carbon nano-tubes with a mesh shape having an opening for passage of the emitted electrons; an anode electrode formed below the upper glass plate to accelerate the emitted electrons; and a fluorescent layer formed on a lower surface of the anode electrode.
Abstract:
Disclosed is a flat lamp device, including lower and upper glass plates facing each other in parallel; spacers interposed between the plates to keep distance therebetween; a cathode electrode singly formed over the entire upper surface of the lower glass plate; an insulation film formed on the cathode electrode; semiconductor films independently patterned on the insulation film at intervals; a catalyst-metal layer laminated on the buffer metal to improve the adhesion of catalyst metal formed on the semiconductor films; carbon nano-tubes formed on the catalyst-metal layer; a grid electrode installed on the carbon nano-tubes between the plates to guide electron emission from the carbon nano-tubes with a mesh shape having an opening for passage of the emitted electrons; an anode electrode formed below the upper glass plate to accelerate the emitted electrons; and a fluorescent layer formed below the anode electrode to emit light by collision with the accelerated electrons.
Abstract:
The present invention relates to a method of isolating semiconductor devices enabling to prevent an active area from being reduced due to the increase of an isolation area by means of forming trenches, and includes the steps of forming a mask on a semiconductor substrate wherein the mask discloses field areas, forming a first and second trench in the field areas of the semiconductor substrate wherein the first trench has a larger size and a lower aspect ratio than those of the second trench and wherein the second trench has a smaller size and a higher aspect ratio than those of the first trench, depositing filling oxide on the mask and in the first and second trench by a method including characteristic of sputtering wherein the first and second trench are filled up with the filling oxide and a void is formed on a lower part of the second trench, and forming field oxide film by means of etching back the filling oxide to remain inside the first and second trench.
Abstract:
Arteminolides obtained from Artemisia sylvatica MAXIMOWICZ and having a core structure of formula (I) or an isomeric structure thereof are effective farnesyl-protein transferase inhibitors as well as angiogenesis suppressors, and, accordingly, they are useful for the treatment of various cancers and angiogenesis-related diseases. ##STR1##
Abstract:
In a method of controlling an electronic device using a wearable device, the electronic device is paired with the wearable device. A cryptographic key, which corresponds to the electronic device, is stored in a secure storage device included in the wearable device. A distance between the wearable device and the electronic device is estimated by the wearable device. An unlock signal including the cryptographic key, which is stored in the secure storage device, is transmitted from the wearable device to the electronic device when the estimated distance is smaller than a threshold distance. The electronic device is unlocked based on the unlock signal.