Abstract:
A method for choosing channel coding and/or interleaving scheme is applied in a communication connection over a radio interface between a terminal and a base station of a cellular packet radio system. A certain decision-making device allocates channel coding and/or interleaving schemes to communication connections. A request message is communicated (to the decision-making device, indicating a certain set of Quality of Service parameters associated with a certain first communication connection. The set of Quality of Service parameters is mapped to a certain first channel coding and/or interleaving scheme as a part of the channel coding and/or interleaving scheme allocation made by the decision-making device. The first channel coding and/or interleaving scheme is communicated to the base station and the terminal for them to apply said first channel coding and/or interleaving scheme in the first communication connection.
Abstract:
A method and an arrangement for transferring information including delay sensitive data, such as speech and video data, in a packet radio service is provided. Data blocks are transmitted from a mobile station to a radio resource entity during a first active data transfer period using an uplink temporary block flow (TBF) connection. The uplink TBF connection is maintained during a passive period that follows the first active data transfer period, wherein during the passive period the mobile station does not send data blocks to the radio resource entity.
Abstract:
A method and an apparatus are described for increasing the flexibility of uplink resource allocation for a mobile station (MS) (100), that is backwards compatible with earlier standards that provide only a single data flow per MS. The method includes steps of (A) associating an allocated uplink resource (an Uplink State Flag (USF)) with one or more Temporary Block Flows (TBFs) for a Packet Data Channel (PDCH), and not with a MS per se (although a given USF is associated with only a single MS); and (B) using a Temporary Flow Identity (TFI) for identifying a TBF, where a TFI may be unique to a PDCH and, if not, is unique with respect to the MS on a PDCH (and hence with respect to the USF). The result is that the MS is enabled to send any of its TBFs on allocated resources of the same PDCH. An uplink resource may be allocated to the MS dynamically using the Uplink State Flag (USF) or by using a fixed allocation. A total of n Radio Bearers are associated with a single TBF, where n≧1.
Abstract:
When uplink signalling radio bearers steal capacity from a user bearer, at least the amount of data waiting for transmission on a TBF established for the user bearer should be informed to the network. This can be done by using separate countdown values for each radio bearer, using a first countdown value for the bearer the TBF was established for and a second countdown value which indicates the total amount of data on stealing bearers, or by calculating a common countdown value indicating the total amount of data on all bearers using the TBF.
Abstract:
The invention relates to a method for admission control in an interference-limited cellular radio network. Admission can be accepted, if there is a sufficient number of free channels whose measured interference level goes below the interference threshold determined for the channel. The interference threshold of the channel is changed adaptively to ensure the best possible quality of the service offered. In case the quality value of the served radio connections is very good, the interference threshold value of the channel is raised.
Abstract:
When a dynamic channel allocation method based on monitoring of signal levels is used for channel allocation, the results of signal level measurements must be averaged in order to achieve a sufficient reliability. Averaging causes a delay in measurement results, for which reason such a channel may be allocated the interference level of which has just changed e.g. because another connection has been set up which functions nearby on the same channel. According to the invention, allocation of a channel causing excessive interference with a connection already set up is limited.
Abstract:
The invention relates to a method for transmitting data for a multimedia broadcast/multicast service (MBMS) from a radio access network of a cellular communication network via a radio interface to mobile terminals located in a radio cell supplied by said radio access network. The radio access network transmits paging messages on a common control channel. It is proposed that a dedicated channel is employed for transmitting the MBMS data, which dedicated channel is allocated in a way that the mobile terminals are able to receive simultaneously paging messages and the MBMS data. The invention relates equally to a corresponding network entity, mobile terminal and communication system.
Abstract:
Data may be transferred on a packet radio network by creating a connection between two network entities. The data flow may contain active and passive periods. A connection may be maintained during a passive period for a predetermined amount of time or until further data becomes available for transfer.
Abstract:
A method for choosing channel coding and/or interleaving scheme is applied in a communication connection over a radio interface between a terminal and a base station of a cellular packet radio system. A certain decision-making device allocates channel coding and/or interleaving schemes to communication connections. A request message is communicated (to the decision-making device, indicating a certain set of Quality of Service parameters associated with a certain first communication connection. The set of Quality of Service parameters is mapped to a certain first channel coding and/or interleaving scheme as a part of the channel coding and/or interleaving scheme allocation made by the decision-making device. The first channel coding and/or interleaving scheme is communicated to the base station and the terminal for them to apply said first channel coding and/or interleaving scheme in the first communication connection.
Abstract:
A method as described by which an application executing in an application layer of a multi-layer communication protocol forming part of a general packet radio service (GPRS) session can signal for the setup and release of Temporary Block Flow (TBF) which will not be released during application execution in silent (inactive) periods. When applications such as voice, telnet or web browsing have specific traffic type data that have inactive periods between active periods are to be carried over GPRS, the session consists of multiple active periods. Current TBF release procedures lead to multiple TBF setups during such sessions. With the method described, a special type of TBF can be set up with special procedures for release of this TBF which greatly minimizes the need for multiple TBF setups during a session containing data transfers with inactive periods between active data transmissions.