Abstract:
A method and system to help facilitate efficient use of frequency spectrum. A base station will provide service on two carriers that partially overlap with each other in frequency. To facilitate this, the base station could shift the frame timing of one carrier in relation to the other carrier, so as to minimize or avoid overlap of the carriers' downlink control channels. Further, the base station could control service on each carrier in a manner that helps avoid resource conflicts within the overlapping frequency region.
Abstract:
When an upper layer of a device is going to initiate an exchange of two or more messages with a corresponding upper layer of another device, the initiating device will provide from its upper layer to a lower layer such as a MAC layer an indication of how many messages the devices will be exchanging. In response to that indication, the lower layer of the initiating device will then cause the lower layer of the other device to forgo checking for and confirming availability of the channel for transmission of the next message of the exchange from the other device to the initiating device. Further, the lower layer of the initiating device may also responsively forgo for and confirming availability of the channel for a subsequent message of the exchange.
Abstract:
Aspects of selecting a base station for a UE device are described. The UE device or a wireless network component (e.g., a base station) can determine RF uplink use values of a coverage area. The RF uplink use values can be received from one or more base stations and can be based on a subframe or other time segment. A processor can determine a base station having a greatest number of subframes with at least one resource block available. If the base stations have an equal number of subframes having at least one resource block available, the processor can determine which base station has a greatest number of subframes having at least two resource blocks available (or three, etc. if additional ties exist). A selection of the base station can be based on the processor's determination and whether the UE device is located within an edge of a coverage area.
Abstract:
One or more random access channel (RACH) instances may be specially designated for use by mobile terminals that are in threshold poor coverage of an intended base station. Further, one or more other base stations that provide coverage overlapping with, within, or near coverage of the intended base station may be arranged to monitor the one or more specially designated RACH instances for mobile terminal access requests and, upon detecting any such access request, to forward the access request via an inter-base station link to the intended base station. The intended base station may then respond to the mobile terminal access request through a direct downlink communication to the mobile terminal.
Abstract:
In an example method, a UE receives modulated data transmitted from a base station in a given subframe, and searches through the received modulated data to find the physical control format indicator channel (PCFICH) of the given subframe. The searching is based on the PCFICH having a predefined structure. Upon thereby finding the PCFICH of the given subframe, the UE determines the control format indicator (CFI) carried by the PCFICH of the given subframe. The UE then uses the CFI carried by the PCFICH of the given subframe as a basis to read a portion of a downlink control channel of the given subframe.
Abstract:
Disclosed is a method and apparatus to help manage data communication in a manner that increases downlink capacity. As disclosed, a base station may transmit, in a downlink traffic channel of a given sub-frame, bearer data to a particular wireless communication device (WCD). After transmitting the bearer data, the base station may transmit, in the downlink control channel of another sub-frame, a signaling message that directs the particular WCD to read the previously transmitted bearer data. The signaling message may include an indication of the given sub-frame having the previously transmitted bearer data. When the WCD receives and reads the signaling message, the WCD may use the indication as a basis to read the previously transmitted bearer data in accordance with the signaling message.
Abstract:
Disclosed is a method and system for management of control channel capacity to help reduce control channel congestion over time. As disclosed, a first base station provides a first downlink control channel including a first set of air interface resources and a second base station provides a second downlink control channel including a second set of air interface resources, the first set of air interface resources and the second set of air interface resources being mutually exclusive. Upon making a determination that the first downlink control channel is threshold loaded (i.e., congested), temporary reconfiguration of the wireless communication system is carried out by transferring a portion of the second set of air interface resources from the second downlink control channel to the first downlink control channel such that (i) capacity of the first downlink control channel is increased and (ii) capacity of the second downlink control channel is commensurately decreased.
Abstract:
Disclosed is a method and system in which a PDSCH segment assigned to a UE in a particular TTI not only carries data to the UE but also carries an assignment to the UE of a PDSCH in a subsequent TTI for carrying additional data to the UE in that subsequent TTI. Such an arrangement can help make good use of possibly otherwise unused PDSCH capacity and can help to manage PDCCH capacity in the subsequent TTI.