Abstract:
A method for controlling tune-away of a UE from its serving base station during handover, where the UE is configured to tune away from its serving base station at scheduled tune-away times, is disclosed herein. The method includes, between a first scheduled tune-away time and a next, second scheduled tune-away time, (a) determining that the UE has threshold weak signal strength from the serving base station, and (b) responsive to determining that the UE has threshold weak signal strength from the serving base station, determining a remaining battery energy level of the UE. The method further includes, based at least in part on the determined remaining battery energy level of the UE, causing the UE to tune away from the serving base station before the second scheduled tune-away time to scan for target coverage.
Abstract:
As disclosed, while a wireless communication device (WCD) is idling on a particular carrier frequency of a base station, the base station may receive a message broadcast by that base station, the message specifying multiple relative sets of priority levels defined for a set of carrier frequencies and correlating each of the multiple relative sets of priority levels with respective different WCD operational characteristics. In particular, the message may specify a first correlation of one relative set of priority levels with one WCD operational characteristic and includes a second correlation of a different relative set of priority levels with a different WCD operational characteristic. The WCD may select one of the relative sets of priority levels responsive to the WCD having a WCD operational characteristic that the message correlates with the selected relative set of priority levels. The WCD may then apply the selected relative set of priority levels.
Abstract:
One or more indications of signal quality as measured by a wireless communication device (WCD) served by a radio access network (RAN) may be transmitted from the WCD to the RAN. A determination may be made that the one or more indications of signal quality meet or exceed a threshold signal quality. Possibly based on the one or more indications of signal quality meeting or exceeding the threshold signal quality, the WCD may bundle at least some hybrid automatic repeat request (HARD) acknowledgments that the WCD transmits to the RAN.
Abstract:
It may be determined that a hybrid automatic repeat request (HARQ) transmission schedule from a radio access network (RAN) to wireless communication devices (WCDs) uses HARQ acknowledgment bundling for a first set of two or more data slots, and that the HARQ transmission schedule does not use HARQ acknowledgment bundling for a second set of one or more data slots. It may further be determined that a first WCD supports carrier aggregation when receiving communications from the RAN, and that a second WCD does not support carrier aggregation when receiving communications from the RAN. Based on the first WCD supporting carrier aggregation, the RAN may transmit a first data to the first WCD in the first set of data slots. Based on the second WCD not supporting carrier aggregation, the RAN may transmit a second data to the second WCD in the second set of data slots.
Abstract:
According to aspects of the present disclosure, a method and system are provided for managing handover. In accordance with the disclosure, while a source base station serves a UE, the source base station receives from the UE a measurement report providing an indication of a plurality of candidate target base stations having coverage detected by the UE. Responsive to the report, a CSI reporting rate is determined for each of the candidate targets on a per base station basis. A channel coherence is also determined for the UE. The communication system then selects a target base station from the plurality of candidate targets based on (i) the determined channel coherence and (ii) the determined CSI reporting rates, and the source base station then triggers handover of the UE from the source base station to the selected target base station.
Abstract:
A base station is configured for latency-based contention free preamble reuse. The base station determines the latency between it and each of a plurality of neighboring stations and, in response to receiving two different handover requests for two different UEs from two different neighboring base stations, the base station assigns one contention free preamble for use by both of the two UEs based at least in part on respective latencies from the base station to each of the two different neighboring base stations.
Abstract:
A determination may be made that a region of the RAN is serving more than a threshold extent of WCDs configured for machine-to-machine communication. The region of the RAN may include a set of one or more wireless coverage areas, and each wireless coverage area in the set of wireless coverage areas may include at least one paging channel. The paging channel parameters of each wireless coverage area in the set of wireless coverage areas may be modified to increase a rate at which the RAN successfully pages WCDs via the set of wireless coverage areas.
Abstract:
Embodiments may involve the adjustment of access parameters for a wireless communication device (WCD), based on the codec that is currently associated with the WCD. An illustrative method involves a WCD: (a) determining a codec that is associated with the WCD in a given coverage area, (b) using the associated codec as a basis for determining a setting for each of one or more access parameters for an access process of the WCD, and (c) operating according to the determined settings for the one or more access parameters.
Abstract:
Embodiments may involve the adjustment of the way in which coverage areas are included in the active set of a wireless communication device (WCD), based on the codec that is currently associated with the WCD. An illustrative method involves a radio access network (RAN): (a) determining a codec that is associated with a WCD; (b) using the associated codec as a basis for determining a value for at least one active-set parameter for the WCD; and (c) sending a message to the WCD, wherein the message indicates the determined value for the at least one active-set parameter.
Abstract:
A radio access network (RAN) may receive a call setup request from a wireless communication device (WCD). The call setup request may indicate that the WCD supports a first media codec. The RAN may obtain a set of candidate wireless coverage areas for serving the WCD. A first subset of the candidate wireless coverage areas may support the first media codec, and a second subset of the candidate wireless coverage areas might not support the first media codec. The RAN may assign traffic channels to the WCD, such that the assigned traffic channels include traffic channels from at least two of the first subset of the candidate wireless coverage areas, but do not include traffic channels from any of the second subset of the candidate wireless coverage areas. The RAN may communicate with the WCD substantially simultaneously via the assigned traffic channels using the first media codec.