摘要:
A combination glide test/burnishing head can be utilized in a glide test/burnishing system. The combination glide test/burnishing head includes two piezo-electric elements, which can be utilized in a passive mode as sensors for detecting contacts between the glide test/burnishing head and asperities on the surface of a magnetic recording disc. Contact between the glide test/burnishing head and disc asperities results in generation of a defect detection signal, which can be utilized by associated test logic to define the location of the detected asperities on the disc surface. The piezo-electric elements of the glide test/burnishing head can also be utilized in an active mode to cause yaw variation in the flight attitude of the glide test/burnishing head, in turn causing a burnishing pad on the glide test/burnishing head to be moved radially into contact with a detected disc asperity. Once an active, burnishing operation has been performed, the piezo-electric elements of the glide test/burnishing head are returned to passive mode, to determine if the burnishing operation was successful in removing the asperity on the disc surface. Combining the glide test and burnishing functions in a common head assembly allows the glide test and burnishing functions to be performed using a single actuator for the glide test/burnishing head, simplifying and reducing the cost of a glide test/burnishing system.
摘要:
A method and apparatus for calibrating a glide head and detector system performs a pre-screening to ensure the quality of the glide head and the piezoelectric sensor in the detection system. The glide head and the piezoelectric sensor detect a signal when the glide head makes contact with the disk, such as a magnetic recording disk. Calibration of the detection system utilizes a specially made bump disk that has asperities of desired height and size that protrude out of a flat disk surface. The glide head is flown over the bump disk, and by gradually reducing the disk spinning velocity, the head is brought closer to the disk and eventually into contact with the asperity. The onset of contact, as detected by the piezoelectric sensor, defines a disk spinning velocity for the head to fly at the desired height. In order to decouple the glide head flying characteristics and the piezoelectric quality and transfer function from other factors that affect the calibration of the detection system, laser pulses are directed at the glide head. Head vibrations are introduced in the glide head and detected by the piezoelectric sensor. The head excitations are recorded as a spectrogram in which the resonance frequencies are observed. From the amplitude and frequency readings, head resonance frequencies are identified and the piezoelectric sensor response is characterized. This allows the pre-screening of the head/sensor system and the decoupling of the glide head flying characteristics and the piezoelectric sensor quality from the asperity integrity effects on the calibration of the detection system.
摘要:
An improved glide head is useful for testing the glide quality of a disc. The glide head includes an air bearing surface, pads extending from the air bearing surface and a contact sensor, the contact sensor providing an output in response to an impact on the pad. The air-bearing surface defines a resting plane. The pad protrudes from the air-bearing surface such that the pad projects below the resting plane of the air-bearing surface.
摘要:
A storage medium is provided that includes a texture zone having a plurality of protrusions. Each of the protrusions is separated by a short circumferential pitch. Alternatively, the texture zone includes a plurality of protrusions with a circumferential pitch less than the diameter of any protrusion. The resonance excitation between the magnetic head and the storage medium in the data storage system is reduced by forming the texture zone with the protrusions that cause the excitation frequencies of the data storage system to shift away from its resonance frequencies.
摘要:
A method of determining the close point for a glide head includes measuring the fly height of at least three positions remove from the selected close point position. The three selected positions are curve-fitted and extrapolated so as to obtain the height at the selected close point. Adaptions are made where the glide head can roll and measurements can be taken at locations transversely across the head.