摘要:
A tire mold having air venting passages or holes is provided with plastic inserts or plugs for the vent holes along the cavity side of the mold. The inserts are composed of a plastic material having a heat distortion temperature of no less than 275.degree. F. at 66 psi in accordance with ASTM D648 and a coefficient of thermal expansion less than 8.times.10.sup.-5 in/in/.degree.C.
摘要翻译:具有排气通道或孔的轮胎模具设置有用于沿着模具的空腔侧的通气孔的塑料插入件或塞子。 插入件根据ASTM D648在66psi下具有不低于275°F的热变形温度的塑料材料和小于8×10-5in / in /℃的热膨胀系数。
摘要:
Techniques are disclosed for reducing the accumulation of gases in an implantable infusion device. In one example, an implantable infusion device (IID) includes a housing, an expandable and contractible reservoir, and a standoff member. The expandable and contractible reservoir is configured to store a therapeutic agent and is arranged within the housing. A first end of the reservoir is configured to collapse toward a second end of the reservoir as the reservoir contracts. The standoff member is interposed between the first end and the second end of the reservoir and is configured to hold at least a portion of the first end offset from the second end when the reservoir is in a contracted state.
摘要:
An accumulator is employed in an implantable infusion device to provide compliance in the flow path of the device. The accumulator may act to increase the pumping accuracy and repeatability while simultaneously reducing the energy requirements of the device. In one example, the accumulator is arranged at the outlet of a fluid delivery pump of the infusion device. The accumulator includes a cover and a diaphragm biased away from the cover and configured to deflect toward the cover under pressure generated by the therapeutic agent in a flow path of the infusion device. The cover of the accumulator is configured to withstand the pressure generated by the therapeutic agent in the flow path without deforming.
摘要:
An accumulator is employed in an implantable infusion device to provide compliance in the flow path of the device. The accumulator may act to increase the pumping accuracy and repeatability while simultaneously reducing the energy requirements of the device. In one example, the accumulator is arranged at the outlet of a fluid delivery pump of the infusion device. The accumulator includes a cover and a diaphragm biased away from the cover and configured to deflect toward the cover under pressure generated by the therapeutic agent in a flow path of the infusion device. The cover of the accumulator is configured to withstand the pressure generated by the therapeutic agent in the flow path without deforming.
摘要:
An implantable drug delivery device includes a pump motor that is driven by electrical energy from a storage capacitor. At the end of each pump delivery cycle, electrical energy stored in the pump motor is recovered and returned to the storage capacitor, so that it can be used in subsequent delivery cycles.
摘要:
A medical device system comprises a reservoir configured to store a therapeutic fluid and a medical pump configured to deliver the therapeutic fluid from the reservoir to a patient. The system also comprises a reservoir fill level detector configured to detect a fill status of the reservoir, the reservoir fill level detector including a contact pad operably attached to the reservoir whereby the contact pad moves in a predetermined path during the emptying and filling of the reservoir. A resistor strip mounted on the inside of the chamber is in continual contact with the contact pad and the resistance of an electric current passed through the resistor strip is monitored by a processor to determine the position of a selected portion of the reservoir. The position of the reservoir is directly related to the fill status.
摘要:
Detection of end of stroke for an electromagnetic pump may be performed using, for example, a calculated first flux derivative. Further, inductance of a coil that can be energized to produce a pump stroke may be calculated (e.g., the pump may include an actuator moveable in response to the energization of the coil). For example, the inductance may be calculated as a function of sense coil current and source electrical potential when the actuator is not moving for use in determining position of the actuator.
摘要:
Techniques are disclosed for reducing the accumulation of gases in an implantable infusion device. In one example, an implantable infusion device (IID) includes a housing, an expandable and contractible reservoir, and a standoff member. The expandable and contractible reservoir is configured to store a therapeutic agent and is arranged within the housing. A first end of the reservoir is configured to collapse toward a second end of the reservoir as the reservoir contracts. The standoff member is interposed between the first end and the second end of the reservoir and is configured to hold at least a portion of the first end offset from the second end when the reservoir is in a contracted state.
摘要:
An implantable delivery device including a housing, a port assembly, and a plurality of grooves. The housing includes an outer wall defining an exterior face. The port assembly includes a septum and a port opening that is exteriorly open relative to the housing face. The plurality of grooves are formed in the exterior face proximate the port opening, and are sized to receive a needle tip to guide the needle tip toward the port opening. In one embodiment, the port assembly is fluidly connected to a reservoir, such that the port assembly constitutes a reservoir refill port.
摘要:
An implantable infusion device includes a housing and a collapsible member and an interference member disposed within the housing. The collapsible member defines a reservoir for containing fluid and has an outer surface that moves between an empty position and a full position in response to a change in volume of fluid contained in the reservoir. The interference member is configured to engage the outer surface of the collapsible member as the reservoir approaches the full position and to cause pressure in the reservoir to increase following engagement with the surface of the collapsible member and concomitant fluid introduction into the reservoir. The infusion device further includes a pressure sensor in communication with the reservoir, which can be used to determine whether the reservoir is full by measuring characteristic pressures associated with the interference member engaging the outer surface of the collapsible member and concomitant fluid introduction into the reservoir.