Abstract:
An electromagnetic wave sensor that limits the influence on bolometer membranes that is caused by heat from a local heat source is provided. Electromagnetic wave sensor has first substrate, second substrate that faces first substrate so as to form inner space between first substrate and second substrate, wherein second substrate transmits infrared rays; a plurality of bolometer membranes that is provided in inner space and that is supported by second substrate; local heat source that is formed in first substrate; first electric connection member that connects first substrate to second substrate; and lead that extends on or in second substrate and that connects first electric connection member to bolometer membrane.
Abstract:
A thermally assisted magnetic recording head includes a plasmon-generator that generates near-field light (NF light) from a near-field light generating portion on a near field light generator end surface constituting a portion of the medium opposing surface. The plasmon-generator has a first PG part having the near field light generator end surface constituting a portion of the medium opposing surface, and a second PG part positioned at a back side compared to the medium opposing surface when viewed from the medium opposing surface side. When viewed from the medium opposing surface side, the first PG part extends toward the back side from the medium opposing surface, and the second PG part is placed to contact at least a portion of both side surfaces of the first PG part. A material that configures the first PG part is a material having high thermostability compared to a material that configures the second PG part, and the material that configures the second PG part is a material having high excitation efficiency of plasmon compared to the material that configures the first PG part.
Abstract:
The thermally-assisted magnetic recording head includes: a magnetic pole having an end exposed on an air-bearing surface; a waveguide; a plasmon generator formed essentially of a first metallic material, and having a first region and a second region, the first region extending backward from the air-bearing surface to a first position, and the second region being coupled with the first region at the first position and extending backward from the first position; and a metallic layer filling a part in the second region, and formed essentially of a second metallic material that has a higher melting temperature than a melting temperature of the first metallic material.
Abstract:
The thermally-assisted magnetic recording head of the invention includes: a waveguide; a magnetic pole; a cladding layer provided between the waveguide and the magnetic pole; and a plasmon generator embedded in the cladding layer. The cladding layer includes a first cladding section located on a side close to an air-bearing surface and a second cladding section located on a side far from the air-bearing surface, and a thermal expansion coefficient of the first cladding section is larger than a thermal expansion coefficient of the second cladding section.
Abstract:
A resistive element array circuit includes word lines, bit lines, resistive elements, a selector, a differential amplifier, and a ground terminal. The word lines are coupled to a power supply. The resistive elements are each disposed at an intersection of corresponding one of the word lines and corresponding one of the bit lines. The selector is configured to select one word line and one bit line. The differential amplifier includes a positive input terminal configured to be coupled to the selected one of the bit lines which is selected by the selector, a negative input terminal configured to be coupled to non-selected one of the bit lines which is not selected by the selector and to non-selected one of the word lines which is not selected by the selector, an output terminal being coupled to the negative input terminal. The ground terminal is coupled to the positive input terminal.
Abstract:
A recording head has a near field light (NF light) generator generating NF light on a generator end surface that irradiates a magnetic recording (MR) medium; a main magnetic pole including a pole end surface facing an air bearing surface (ABS) that emits magnetic flux to the MR medium from the pole end surface; and a return shield having a shield end surface facing the ABS, that is magnetically linked with the main magnetic pole, and absorbs magnetic flux from the MR medium at the shield end surface. The pole end surface and the shield end surface are on the same side of the generator end surface in the down track direction, and are close to each other in the track crossing direction. A center line in the down track direction of the generator end surface extends between opposing sides of the pole end surface and the shield end surface.