Abstract:
A thermistor element includes: a thermistor film formed of an oxide having a spinel crystal structure; a first surface-side electrode provided in contact with a first surface of the thermistor film; and a second surface-side electrode provided in contact with a second surface of the thermistor film, wherein the first surface-side electrode includes a first electrode and a second electrode, and at least a part of the first electrode and at least a part of the second electrode are disposed to overlap the second surface-side electrode, and in the thermistor film, an oxygen concentration of a second region between the first electrode and the second electrode in a plan view is higher than that of a first region consisting of a region that overlaps the first electrode and the second surface-side electrode and a region that overlaps the second electrode and the second surface-side electrode.
Abstract:
The light detection element includes a magnetic element and an optical waveguide. The magnetic element includes a first ferromagnetic layer, a second ferromagnetic layer, and a spacer layer sandwiched between the first ferromagnetic layer and the second ferromagnetic layer. The optical waveguide includes at least a core and a cladding covering at least a part of the core. Light that has propagated through the optical waveguide is applied to the magnetic element.
Abstract:
A heat utilizing device is provided in which the thermal resistance of the wiring layer is increased while an increase in electric resistance of the wiring layer is limited. Heat utilizing device has thermistor whose electric resistance changes depending on temperature; and wiring layer that is connected to thermistor. A mean free path of phonons in wiring layer is smaller than a mean free path of phonons in an infinite medium that consists of a material of wiring layer.
Abstract:
The present invention relates to a plasmon generator, in which a surface plasmon is excited by application of light. The plasmon generator extends along one direction. The plasmon generator includes a first end surface that is positioned on one end in the one direction and at which near-field light is generated along with the excitation of the plasmon; and a second cross section that is substantially parallel to the first end surface and is away from the first end surface. The first end surface has a polygonal shape that does not have a substantially acute inner angle. The second cross section has an upper part that has a shape substantially the same as or similar to that of the first end surface and a flare shaped lower part that is connected to the upper part and has a width that increases as it is far from the upper part.
Abstract:
A thermistor element includes: a thermistor film; a first electrode provided in contact with one surface of the thermistor film; and a pair of second electrodes provided in contact with an other surface of the thermistor film, wherein the thermistor film is provided to cover a periphery of the first electrode.
Abstract:
A thermistor element includes: a thermistor film; a pair of first electrodes in contact with one surface of the thermistor film; an insulation film opposite to a contact side of the pair of first electrodes, the contact side on which the pair of first electrodes is in contact with the thermistor film; and at least one opening portion located in a region which overlaps each of the first electrodes when viewed in a plan view and passing through the insulation film. Each first electrode has a first portion located where each of the first electrodes and the opening portion overlap when viewed in a plan view and a second portion outside of where each of the first electrodes and the opening portion overlap when viewed in a plan view and is over the first portion and second portion to be in contact with the one surface of the thermistor film.
Abstract:
A thermistor element includes a thermistor film, a first electrode provided in contact with one surface of the thermistor film, and a pair of second electrodes provided in contact with the other surface of the thermistor film, wherein the thermistor film includes an oxide having a spinel crystal structure and having a [111] preferred orientation in a film thickness direction.
Abstract:
A thermally assisted magnetic recording head has a generator end surface facing an air bearing surface (ABS), and includes: a near-field light (NF light) generator that generates an NF light on the generator end surface and irradiates a magnetic recording medium with the NF light, and a main magnetic pole end surface positioned in the vicinity of the generator end surface; a main magnetic pole that emits a magnetic flux from the main magnetic pole end surface to the magnetic recording medium and a shield end surface positioned in the vicinity of the generator end surface; and a return shield that is magnetically linked to the main magnetic pole, and that absorbs the magnetic flux returning from the magnetic recording medium at the shield end surface. The main magnetic pole and the return shield are positioned to be on the same side with respect to the NF light generator in the down track direction, and the NF light generator does not overlap with the main magnetic pole either in the down track direction or in the cross track direction.
Abstract:
Thermally-assisted magnetic recording head, includes: a magnetic pole having an end exposed on an air-bearing surface; a waveguide; a plasmon generator having a first and second region, first region extending backward from the air-bearing surface to a first position, second region being coupled with the first region at the first position, extending backward from first position, and having a width in a track-width direction, and width in the track-width direction of second region being larger than a width in the track-width direction of first region; an adhesion layer having an end exposed on the air-bearing surface and a first adhesion region, the first adhesion region being in close contact with an end face in the track-width direction of first region; and a cladding layer located around plasmon generator and adhesion layer. Adhesion force between adhesion layer and plasmon generator is greater than adhesion force between cladding layer and plasmon generator.
Abstract:
An electromagnetic wave sensor 1 has electromagnetic wave absorbers disposed side by side in first and second directions, temperature detection portions held by the respective electromagnetic wave absorbers and sets of two arm portions connected to each electromagnetic wave absorber at two connection portions. In a plan view, the arm portions have two first extending portions extending from the connection portions in directions of which components in the second direction are opposite to each other, and two second extending portions extending from the first extending portions in directions of which components in the first direction are opposite to each other. Four sides of a rectangle circumscribing each of the electromagnetic wave absorbers with a smallest area are inclined with respect to the first direction in directions in which each electromagnetic wave absorber is away from the second extending portions with the connection portions as fulcrums.