Abstract:
A method of de-mosaicing pixel data from an image processor includes generating a pixel block that includes a plurality of image pixels. The method also includes determining a first image gradient between a first set of pixels of the pixel block and a second image gradient between a second set of pixels of the pixel block. The method also includes determining a first adaptive threshold value based on intensity of a third set of pixels of the pixel block. The pixels of the third set of pixels are adjacent to one another. The method also includes filtering the pixel block in a vertical, horizontal, or neutral direction based on the first and second image gradients and the first adaptive threshold value utilizing a plurality of FIR filters to generate a plurality of component images.
Abstract:
An apparatus and method for geometrically correcting an arbitrary shaped input frame and generating an undistorted output frame. The method includes capturing arbitrary shaped input images with multiple optical devices and processing the images, identifying redundant blocks and valid blocks in each of the images, allocating an output frame with an output frame size and dividing the output frame into regions shaped as a rectangle, programming the apparatus and disabling processing for invalid blocks in each of the regions, fetching data corresponding to each of the valid blocks and storing in an internal memory, interpolating data for each of the regions with stitching and composing the valid blocks for the output frame and displaying the output frame on a display module.
Abstract:
An apparatus and method for geometrically correcting a distorted input frame and generating an undistorted output frame. The apparatus includes an external memory block that stores the input frame, a counter block to compute output coordinates of the output frame for a region based on a block size of the region, a back mapping block to generate input coordinates corresponding to each of the output coordinates, a bounding module to compute input blocks corresponding to each of the input coordinates, a buffer module to fetch data corresponding to each of the input blocks, an interpolation module to interpolate data from the buffer module and a display module that receives the interpolated data for each of the regions and stitch an output image. The method includes determining the size of the output block based on a magnification data.
Abstract:
A video system includes a first video device. The first video device includes a video output port and an arbitrary data scrambler. The first video device transmits a video stream through the video output port. The video output port is configured to insert video timing reference values into the video stream. The arbitrary data scrambler is configured to scramble non-video data for transmission in the video stream such that unscrambled non-video data containing video timing reference values is transformed, without information loss, to scrambled non-video data containing no video timing reference values.
Abstract:
Techniques for image processing including receiving input image data, wherein the input image data includes data associated with a clear color channel, receiving a color offset value associated with a color channel, wherein color values for the color channel are not provided in the input image data, based on the color offset value, generating intermediate estimated color values for the color channel, wherein generating the intermediate estimated color values includes: clipping color values that have a magnitude greater than the color offset value, and adjusting color values that have a magnitude less than the color offset value based on the color offset value, applying a color correction function to the intermediate estimated color values based on the color offset value to determine color corrected estimated color values, and outputting the color corrected estimated color values.
Abstract:
A method for automatic exposure (AE) control is provided that includes receiving statistics for AE control for an image from an image signal processor (ISP) coupled to an image sensor generating the image, computing an exposure value at a current time t (EV(t)) using a cost function based on target characteristics of an image, wherein computation of the cost function uses the statistics, and computing AE settings for the image sensor based on EV(t).
Abstract:
A method for automatic exposure (AE) control is provided that includes receiving statistics for AE control for an image from an image signal processor (ISP) coupled to an image sensor generating the image, computing an exposure value at a current time t (EV(t)) using a cost function based on target characteristics of an image, wherein computation of the cost function uses the statistics, and computing AE settings for the image sensor based on EV(t).
Abstract:
An apparatus and method for geometrically correcting a distorted input frame and generating an undistorted output frame. The apparatus includes an external memory block that stores the input frame, a counter block to compute output coordinates of the output frame for a region based on a block size of the region, a back mapping block to generate input coordinates corresponding to each of the output coordinates, a bounding module to compute input blocks corresponding to each of the input coordinates, a buffer module to fetch data corresponding to each of the input blocks, an interpolation module to interpolate data from the buffer module and a display module that receives the interpolated data for each of the regions and stitch an output image. The method includes determining the size of the output block based on a magnification data.
Abstract:
A system on a chip (SoC) implementing dynamic grouping of multiple cameras in an image processing system is disclosed. The SoC includes an image signal processor (ISP) configured to receive a signal corresponding to an image from two or more cameras, dynamically group the cameras into groups based on a measured view brightness and/or color temperature observed by each of the cameras, and assign cameras with a group of the groups to a same exposure/gain setting. The SoC further includes a statistics engine configured to receive the image signals and statistics related to the image signals from the ISP and determine a measurement of image brightness and/or color temperature of each image based on the image signals for forwarding to the ISP.
Abstract:
A method of de-mosaicing pixel data from an image processor includes generating a pixel block that includes a plurality of image pixels. The method also includes determining a first image gradient between a first set of pixels of the pixel block and a second image gradient between a second set of pixels of the pixel block. The method also includes determining a first adaptive threshold value based on intensity of a third set of pixels of the pixel block. The pixels of the third set of pixels are adjacent to one another. The method also includes filtering the pixel block in a vertical, horizontal, or neutral direction based on the first and second image gradients and the first adaptive threshold value utilizing a plurality of FIR filters to generate a plurality of component images.