摘要:
A plastic optical element for focusing light to a target includes a first lens and a second lens. The first lens includes an incident surface, a projection surface opposite the incident surface, and a non-optical surface through which light does not pass and that includes a non-transfer portion. At least one light beam passes from the incident surface to the projection surface. The second lens includes an incident surface, a projection surface opposite the incident surface, and a non-optical surface through which light does not pass and that includes a non-transfer portion disposed opposite the non-optical surface of the first lens. At least one light beam passes from the incident surface to the projection surface. The non-transfer portions of the first lens and the second lens are portions on which no surface is transferred from a surface of a mold used to form the plastic optical element.
摘要:
A plastic optical element is provided, which includes an optical element body having a transfer surface which includes at least one laser beam incident portion of a concave shape, and a support portion connected with the optical element body, in which the support portion is disposed in a direction of a tangent line at an end of the transfer surface, and the optical element body and a part of the support portion are molded in the same nest structure.
摘要:
An optical scanning device for guiding a light beam to a member to scan the member with the light beam, including a light source emitting the light beam; a light deflector deflecting the light beam; a focusing optical system including a plastic optical element molded using a die. The optical element has least two transfer surfaces formed by contacting with transfer surfaces of the die and including a light entrance surface and a light exit surface; and a third surface including a non-transfer surface formed without contacting a transfer surface of the die. The light beam passes through the optical element in such a manner that the optical axis center of the light beam extends in a direction parallel to the shorter side of the optical element while being shifted from the dimensional center of the optical element toward the third surface of the optical element.
摘要:
A first plastic lens and a second plastic lens constituting each imaging optical system are arranged on opposite sides of an optical deflector, so that main scanning directions of optical beams scanned by the single optical deflector become substantially parallel to each other, and the first plastic lens and the second plastic lens of at least one of the plurality of (four) imaging optical systems are formed such that secondary components at scanning positions on the (four) surfaces to be scanned are arranged in a same direction, and are molded by a same mold cavity.
摘要:
An optical element having an optical surface and at least three convex portions on a surface different from the optical surface, wherein, among the at least three convex portions, two convex portions a space between whose centers is a maximum and one convex portion a length of a perpendicular from whose center to a straight line connecting centers of the two convex portions is a maximum satisfy a relationship of tan−1 (h/p)≦a first specification value, wherein h is a greater one of heights of the optical element at centers of the two convex portions with reference to a tangential plane of the optical element at a position of a foot of the perpendicular, and p is a length of the perpendicular.
摘要:
An optical element having an optical surface and at least three convex portions on a surface different from the optical surface, wherein, among the at least three convex portions, two convex portions a space between whose centers is a maximum and one convex portion a length of a perpendicular from whose center to a straight line connecting centers of the two convex portions is a maximum satisfy a relationship of tan−1 (h/p)≦a first specification value, wherein h is a greater one of heights of the optical element at centers of the two convex portions with reference to a tangential plane of the optical element at a position of a foot of the perpendicular, and p is a length of the perpendicular.
摘要:
A plastic optical element for an optical system of an optical scanner includes a plurality of optical effective portions through which a plurality of light beams transmit, respectively, formed on at least one of an incidence surface and an exit surface in a sub scan direction, and an optical ineffective portion formed between neighboring optical effective portions not to allow the light beams to transmit therethrough, and including an area in which a local contraction occurs at a time of resin molding.
摘要:
A plastic optical element for an optical system of an optical scanner includes a plurality of optical effective portions through which a plurality of light beams transmit, respectively, formed on at least one of an incidence surface and an exit surface in a sub scan direction, and an optical ineffective portion formed between neighboring optical effective portions not to allow the light beams to transmit therethrough, and including an area in which a local contraction occurs at a time of resin molding.
摘要:
An optical scanning device that scans a plurality of surfaces to be scanned in a main scanning direction by using a light beam includes: a plurality of light sources; a light deflector that deflects a plurality of light beams emitted from the light sources; and a scanning optical system that individually guides each one of the light beams deflected by the light deflector to a corresponding one of the surfaces to be scanned. The scanning optical system includes one scanning lens shared by the light beams, and at least one surface of the scanning lens has a plurality of optical surfaces corresponding to the plurality of light beams disposed in a sub-scanning direction with a flat surface provided between the optical surfaces.
摘要:
An optical scanning device that scans a plurality of surfaces to be scanned in a main scanning direction by using a light beam includes: a plurality of light sources; a light deflector that deflects a plurality of light beams emitted from the light sources; and a scanning optical system that individually guides each one of the light beams deflected by the light deflector to a corresponding one of the surfaces to be scanned. The scanning optical system includes one scanning lens shared by the light beams, and at least one surface of the scanning lens has a plurality of optical surfaces corresponding to the plurality of light beams disposed in a sub-scanning direction with a flat surface provided between the optical surfaces.