摘要:
An image processing method for executing image data conversion between different types of input and output devices having different color reproduction ranges, and an apparatus therefor are disclosed. A device independent color reproduction range is calculated in, e.g., a CIE L*a*b* uniform color space, and a color reproduction range depending on a device such as a binary recording color printer is calculated. Only a saturation is compressed at a compression ratio corresponding to the ratio of the two calculated color reproduction ranges. Thus, when an output device outputs a color image, image qualities (color reproducibilities) of input and output images can be equalized. Even when a color outside the color reproduction range of the output device is to be output, a satisfactory output which preserves gradation characteristics can be obtained.
摘要翻译:公开了一种用于在具有不同颜色再现范围的不同类型的输入和输出装置之间执行图像数据转换的图像处理方法及其装置。 在例如CIE L * a * b *均匀颜色空间中计算与设备无关的色彩再现范围,并且计算取决于诸如二进制记录彩色打印机的设备的色彩再现范围。 只有饱和度以对应于两个计算出的颜色再现范围的比率的压缩比进行压缩。 因此,当输出设备输出彩色图像时,输入和输出图像的图像质量(颜色再现性)可以相等。 即使输出输出装置的颜色再现范围之外的颜色,也能获得保持灰度特性的令人满意的输出。
摘要:
Input and output units using different signal processing systems cannot be connected to a single image input apparatus. On the basis of the signal format of image data acquired by the input unit and the signal format of image data that can be processed by the output unit, the signal format of image data to be supplied from the input unit to the output unit is controlled.
摘要:
A photographing environmental light spectral distribution detector acquires spectral distribution data of photographing environmental light upon photographing an object image, and an observation environmental light spectral distribution data detector acquires those of environmental light used upon observing a reproduced image. A signal processor converts an image signal photographed by a camera under the photographing environmental light in accordance with the spectral distribution data of respective types of environmental light, generates colorimetric data that an output unit can output, and outputs the colorimetric data to the output unit, thus accurately reproducing the original color of the object while the object is placed under the observation environmental light.
摘要:
The luminance frequencies are calculated in units of blocks in a multi-valued image, and the binarization threshold values in units of blocks are calculated on the basis of the calculated luminance frequencies. By interpolating the binarization threshold values in units of blocks, the binarization threshold values in units of pixels are calculated, and the multi-valued image is binarized using the binarization threshold values in units of pixels.
摘要:
In a system for converting an input image signal input from an image input device into an output image signal to be output by an image output device, an image compression unit converts a spectral image input via an image input unit into R, G, and B data, obtains principal component data by making principal component analysis of the spectral image, and stores these data in an input image storage unit. When the principal component data and R, G, and B data are loaded and stored in an output image storage unit, a spectral reflectance reconstruction unit reconstructs the spectral reflectance of each pixel using these data. A printer model determines the dot quantities of inks used to record each pixel in an image output device on the basis of the calculated spectral reflectance, and generates an output image signal for the image output device. In this way, image data which allows to estimate the spectral reflectance characteristics of an input image is provided, and faithful color reproduction can be realized.
摘要:
An image processing device for performing image correction of a scene by detecting whether a specific object is included in an input image of the scene, and that sets a correction parameter based on the detection result to correct the input image.
摘要:
In a system for converting an input image signal input from an image input device into an output image signal to be output by an image output device, an image compression unit converts a spectral image input via an image input unit into R, G, and B data, obtains principal component data by making principal component analysis of the spectral image, and stores these data in an input image storage unit. When the principal component data and R, G, and B data are loaded and stored in an output image storage unit, a spectral reflectance reconstruction unit reconstructs the spectral reflectance of each pixel using these data. A printer model determines the dot quantities of inks used to record each pixel in an image output device on the basis of the calculated spectral reflectance, and generates an output image signal for the image output device. In this way, image data which allows to estimate the spectral reflectance characteristics of an input image is provided, and faithful color reproduction can be realized.
摘要:
In a system for converting an input image signal input from an image input device into an output image signal to be output by an image output device, an image compression unit converts a spectral image input via an image input unit into R, G, and B data, obtains principal component data by making principal component analysis of the spectral image, and stores these data in an input image storage unit. When the principal component data and R, G, and B data are loaded and stored in an output image storage unit, a spectral reflectance reconstruction unit reconstructs the spectral reflectance of each pixel using these data. A printer model determines the dot quantities of inks used to record each pixel in an image output device on the basis of the calculated spectral reflectance, and generates an output image signal for the image output device. In this way, image data which allows to estimate the spectral reflectance characteristics of an input image is provided, and faithful color reproduction can be realized.
摘要:
Estimating the spectral distribution of an object requires not only the time of image sensing by a multi-spectrum camera but also, in order to process all band information acquired, large amounts of memories for storing all the band information of all pixels, and the processing time for processing all the band information. In this invention, when the spectral distribution data of a total wavelength region is to be estimated from color data and a plurality of spectral distribution data different in wavelength region, the color data is acquired, and, on the basis of the configuration of spectral distribution data defined in accordance with the acquired color data, spectral distribution data necessary for the estimation is acquired. In this way, the spectral distribution data of the total wavelength region is estimated.
摘要:
In a system for converting an input image signal input from an image input device into an output image signal to be output by an image output device, an image compression unit converts a spectral image input via an image input unit into R, G, and B data, obtains principal component data by making principal component analysis of the spectral image, and stores these data in an input image storage unit. When the principal component data and R, G, and B data are loaded and stored in an output image storage unit, a spectral reflectance reconstruction unit reconstructs the spectral reflectance of each pixel using these data. A printer model determines the dot quantities of inks used to record each pixel in an image output device on the basis of the calculated spectral reflectance, and generates an output image signal for the image output device. In this way, image data which allows to estimate the spectral reflectance characteristics of an input image is provided, and faithful color reproduction can be realized.