Abstract:
A dry low nitric oxides (NOx) emissions combustor includes a premixing chamber for mixing fuel and cooling gas and a combustion chamber positioned downstream of the premixing chamber for the combustion of pre-mixed fuel and cooling gas. The combustor further includes a venturi having generally annular walls including converging and diverging wall portions that define a constricted portion and positioned between the premixing chamber and the combustion chamber through which the premixed fuel and air pass to the combustion chamber. The walls defining a passage for cooling gas flow extending axially along the combustion chamber and having an exit for flowing cooling gas to the combustion chamber. A plurality of inlets at the converging and diverging wall portions ingest cooling gas into the passage to produce an impingement cooling effect. A plurality of tubulators disposed downstream of the inlets interact with the cooling gas to produce a turbulated cooling effect. The combustor may be effectively fired over a substantial temperature range to reduce the NOx emissions of the combustor.
Abstract:
A double wall venturi chamber having a converging section, a diverging section and a cylindrical section wherein said chamber defines a venturi zone in which compressed air, fuel and combustion products flow downstream through converging section, diverging section and cylindrical section, and has a cooling gas passage between the walls of the venturi chamber, a least one cooling gas inlet in an outlet wall of the venturi chamber, and at least one cooling gas outlet in an inner wall of the venturi chamber, wherein said cooling gas outlet is in at least one of the diverging and the cylindrical section, and the outlet is downstream of the at least one cooling gas inlet and upstream of an axial end of the chamber.
Abstract:
A transition piece body, having an inlet end for receiving combustion products from a turbine combustor and an outlet end for flowing the gaseous products into a first stage nozzle, has dilution holes in zones respectively adjacent the transition piece body inlet and outlet ends. The volume of dilution air flowing into the gas stream is substantially equal at the inlet and outlet ends of the transition piece. The locations and sizes of the openings are given in the respective X, Y, Z coordinates and hole diameters in Table I. The X and Y coordinates lie in the circular plane of the transition body at its inlet end and the Z coordinates extend in the direction of gas flow from the origin.
Abstract:
A premixing apparatus for a gas turbine system includes non-swirl elements around a periphery of a face of a premixing apparatus and a swirl assembly located substantially at a center of the face. The non-swirl elements premix a premixture prior to the premixture being delivered to a combustor of the gas turbine system. The swirl assembly disturbs a flow of fluid prior to the fluid being delivered to the combustor. The premixture includes fuel and oxidant, and the fluid disturbed by the swirl assembly includes the oxidant or the premixture.
Abstract:
Systems are provided for mounting sector nozzles within gas turbine combustors. In one embodiment, a sector nozzle includes a nozzle portion configured to mix fuel and air to produce a fuel-air mixture and a shell coupled to the nozzle portion. The sector nozzle also includes a first longitudinal strut and a second longitudinal strut coupled to a first surface of the shell on opposite sides of a window within the first surface. A third longitudinal strut is coupled to a second surface of the shell, and the second surface is disposed opposite of the first surface.
Abstract:
A gas turbine includes a plurality of combustion chambers; at least one fuel nozzle for each of the combustion chambers; at least one fuel line for each fuel nozzle in each of the combustion chambers; at least one heat exchanger for each fuel line configured to adjust a temperature of a fuel flow to each fuel nozzle; and a controller configured to control each of the heat exchangers to reduce temperature variations amongst the combustion chambers.
Abstract:
A combustor includes a primary combustion chamber and a secondary combustion chamber, one or more primary nozzles disposed in the primary combustion chamber and providing fuel to the primary combustion chamber, a centerbody assembly, a venturi disposed downstream of the centerbody assembly, and a secondary fuel nozzle housed within the centerbody assembly and extending towards the venturi and providing fuel to the secondary combustion chamber. The secondary fuel nozzle includes a fuel passage and an air passage, and a swirler positioned around the fuel passage and having one or more vanes projecting radially within the air passage, each vane having a trailing edge arranged at a swirl angle relative to a longitudinal axis of the secondary fuel nozzle, the swirl angle is greater than 45°.
Abstract:
A gas turbine combustor is presented, which includes a combustion chamber that is positioned downstream of a premixing chamber. The premixing chamber includes at least one opening for ingesting air. At least one primary fuel nozzle is disposed to discharge fuel into the premixing chamber. The fuel discharged from the primary fuel nozzle mixes with the ingested air in the premixing chamber to provide a fuel air mix. A secondary fuel nozzle is disposed proximate the combustion chamber to discharge fuel at the combustion chamber. A stabilizer is disposed at the secondary fuel nozzle so as to be positioned in close proximity to a flame when fuel at the secondary fuel nozzle is ignited. The stabilizer is composed of a material having the ability to absorb heat from a heat flux generated within the combustor and maintaining a temperature sufficient to sustain ignition of the flame. A method of stabilizing a flame in a gas turbine combustor is also presented. The method including discharging fuel at a combustion chamber of the gas turbine combustor and positioning a stabilizer in close proximity to a flame when the fuel at a combustion chamber is ignited. The stabilizer absorbing heat from a heat flux generated within the combustor and maintaining a temperature sufficient to sustain ignition of the flame.
Abstract:
A method is disclosed for controlling gas turbine operation in response to lean blowout of a combustion can. The gas turbine comprises a pair of combustion cans. The method includes sensing that a first combustion can is extinguished during a full load operation of the gas turbine, adjusting a fuel ratio between the fuel nozzles in each can, delivering a richer fuel mixture to the fuel nozzles nearest to the cross-fire tubes, generating a cross-fire from the second combustion can to the first combustion can, detecting a recovery of the turbine load, and adjusting the fuel ratio to the normal balanced fuel distribution between the fuel nozzles in each can.
Abstract:
A method of assembling a turbine engine includes defining a first chamber and defining a second chamber. The method also includes forming at least one venturi device oriented with a predetermined venturi step angle greater than approximately 48°. The method further includes coupling the first chamber in flow communication with the second chamber via the venturi device therebetween.