摘要:
A nonaqueous electrolyte secondary battery, comprising a positive electrode having a positive-electrode active material layer reversibly inserting and extracting lithium ions on a positive-electrode current collector, a negative electrode having a negative-electrode active material layer reversibly inserting and extracting lithium ions on a negative-electrode current collector, and a nonaqueous electrolyte solution, wherein at least one of the positive and negative electrodes has a film on the surface and at least one of the positive electrode, the negative electrode and the nonaqueous electrolyte solution contains a nitrogen-containing cyclic compound. Such a nonaqueous electrolyte secondary battery is superior in high-temperature storage stability allowing preservation of favorable discharge rate even after high-temperature storage.
摘要:
A non-aqueous electrolyte secondary battery includes: a positive electrode capable of absorbing and desorbing lithium; a negative electrode capable of absorbing and desorbing lithium; a separator interposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte. The positive electrode includes a composite oxide represented by formula (1): LiNixM1-x-yLyO2 as an active material. The formula (1) satisfies 0.3≦x≦0.9 and 0≦y≦0.1. The element M is at least one selected from the group consisting of Co and Mn, and the element L is at least one selected from the group consisting of Mg, Al, Ti, Sr, Zn, B, Ca, Cr, Si, Ga, Sn, P, V, Sb, Nb, Ta, Mo, W, Zr, Y and Fe. The non-aqueous electrolyte includes a main solvent, a solute and vinyl ethylene carbonate.
摘要翻译:非水电解质二次电池包括:能够吸收和解吸锂的正极; 能够吸收和解吸锂的负极; 夹在正极和负极之间的隔膜; 和非水电解质。 正极包括由式(1)表示的复合氧化物:LiNi x M 1-xy L y O 2 O 2 SUB>作为活性物质。 公式(1)满足0.3 <= x <= 0.9且0 <= y <= 0.1。 元素M为选自Co和Mn中的至少一种元素,元素L为选自Mg,Al,Ti,Sr,Zn,B,Ca,Cr,Si,Ga ,Sn,P,V,Sb,Nb,Ta,Mo,W,Zr,Y和Fe。 非水电解质包括主溶剂,溶质和乙烯基碳酸亚乙酯。
摘要:
An ion-conductive polymer electrolyte having a high ionic conductivity and a high stability in both of physical and chemical properties is disclosed. It comprises a polymer containing at least one monomer selected from the group consisting of a hydroxyalkyl acrylate, a hydroxyalkyl methacrylate and vinylene carbonate as its polymerizable ingredient, and at least one electrolyte salt. An aluminum electrolytic capacitor and an electric double-layer capacitor configured with the electrolyte are also disclosed.
摘要:
The present invention relates to a rechargeable negative electrode for an electrochemical apparatus using nonaqueous electrolyte, said electrode comprising an alloy comprising Cd and at least one metal selected from the group consisting of Sn, Pb, In and Bi, as well as to a rechargeable electrochemical apparatus comprising a combination of said negative electrode with a positive electrode having reversibility in charge and discharge.The above-mentioned negative electrode reversibly absorbs and desorbs alkali metal ions, as the result of charge and discharge, in nonaqueous electrolyte containing alkali metal ions. It undergoes no pulverization even after repeated charge and discharge and maintains its shape stably, so that it has a long chargeand-discharge life. Further, since it can absorb a large quantity of alkali metal per unit volume, it is of high energy density.
摘要:
An alloy capable of reversibly absorbing and desorbing lithium ions in a non-aqueous electrolyte containing lithium ions on charging and discharging has excellent applicability to anode for rechargeable electrochemical devices. However, such alloy, when absorbed with lithium, loses its flexibility, so that when it is incorporated in a device in a charged state, it is subject to trouble such as cracking and can not display its properties. This invention adopts a method in which anode alloy is combined with lithium by connecting them so as to be electronically conductive to each other and this combination is fitted into the device, and then the electrolyte is supplied into the device to have lithium absorbed in anode alloy in the device. According to this method, cracking of cathode can be prevented.
摘要:
A non-aqueous electrolyte secondary battery including: a positive electrode that contains a transition metal oxide capable of absorbing and desorbing lithium ions; a negative electrode that is capable of absorbing and desorbing lithium ions; a porous film that is interposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte, wherein at least one selected from inorganic oxide and polyamide is contained in the porous film, and 5 to 15 vol % of ethylene carbonate is contained in a non-aqueous solvent that is contained in the non-aqueous electrolyte.
摘要:
A non-aqueous electrolyte secondary battery is produced using a non-aqueous electrolyte including: a non-aqueous solvent that primarily contains a solvent mixture of ethylene carbonate and propylene carbonate and includes a fluorine-substituted ether having a divalent group represented by a formula: —CFX—CH(CH3)—O—, where X is a hydrogen atom or fluorine atom, in a molecule thereof; and a lithium salt that is dissolved in the non-aqueous solvent. The non-aqueous electrolyte has favorable wettability towards a polyolefin separator, and improves the cycle characteristics and the load characteristics of the non-aqueous electrolyte secondary battery.
摘要:
A non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including an active material absorbing and desorbing lithium ions, a negative electrode including an active material absorbing and desorbing lithium ions, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The separator includes a material containing a substituent group with electron-withdrawing property. The non-aqueous electrolyte includes a non-aqueous solvent and a solute dissolved therein, and the non-aqueous solvent includes at least one selected from the group consisting of a fluorine-containing aromatic solvent, a fluorine-containing cyclic carbonic acid ester, and a fluorine-containing cyclic carboxylic acid ester.The combination of the foregoing separator and the foregoing non-aqueous electrolyte makes it possible to suppress the deterioration in the rate performance of the battery even when the battery is stored under high voltage and high temperature.
摘要:
A non-aqueous electrolyte of the present invention contains a lithium salt (A), a quaternary ammonium salt (B) containing a straight chain alkyl group having carbon atoms of 4 or less and a solvent (C) composed of at least one compound selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dimethoxyethane, ethoxymethoxyethane and diethoxyethane. The molar ratio C/A of the solvent (C) to the lithium salt (A) or the molar ratio C/B of the solvent (C) to the ammonium salt (B) is 6 or less. The non-aqueous electrolyte has a single phase. Consequently, there can be obtained a non-aqueous electrolyte of a high ion concentration having an excellent oxidation resistance and reduction resistance.
摘要:
Provided is a non-aqueous electrolyte for a secondary battery including a non-aqueous solvent, a solute dissolved in the non-aqueous solvent, and an additive, in which the additive includes an unsaturated chain hydrocarbon compound having two or more carbon-carbon unsaturated bonds and including a main chain having five or more carbon atoms. The unsaturated chain hydrocarbon compound preferable as the additive is 1,3-hexadiene or 2,4-hexadiene. The amount of the unsaturated chain hydrocarbon compound is preferably 0.1 to 10 parts by weight per 100 parts by weight of the non-aqueous solvent.