Abstract:
An apparatus comprises both a first side and a second side that is opposite the first side. The apparatus includes a plurality of photovoltaic cells disposed on the first side of the substrate and a plurality of microwave antennas disposed on both the first side of the substrate and the second side of the substrate. In addition, the apparatus comprises at least one photonic integrated circuit operably coupled to the substrate and to at least one of the plurality of photovoltaic cells to thereby receive electrical power therefrom. By one approach, the apparatus can further comprise at least one atomic clock supported by the substrate. By one approach, at least some of the aforementioned plurality of microwave antennas that are disposed on the first side of the substrate can comprise an optically transparent portion that serves as both a protective cover and a focusing lens.
Abstract:
An apparatus can comprise a water tower that itself comprises an elevated water reservoir, at least one water conduit coupled between the elevated water reservoir and an external water distribution system, and at least a first water turbine disposed and configured to receive water via the at least one water conduit and to exit water to the external water distribution system. The apparatus can further comprise a generator that operably couples to that water turbine. The water tower can further include a speed-increasing gearbox that operably couples between an output shaft of the first water turbine and that generator. The apparatus optionally includes at least one electrolyzer operably coupled to receive both water and/or electricity sourced by the aforementioned water tower. The apparatus can also include at least one hydrogen-powered generator that receives hydrogen from the electrolyzer and that burns that hydrogen to generate electricity.
Abstract:
An embodiment of the invention provides a method for determining a patient-specific probability of transplant glomerulopathy. The method collects clinical parameters from a plurality of patients to create a training database. A fully unsupervised Bayesian Belief Network model is created using data from the training database; and, the fully unsupervised Bayesian Belief Network is validated. Clinical parameters are collected from an individual patient; and, such clinical parameters are input into the fully unsupervised Bayesian Belief Network model via a graphical user interface. The patient-specific probability of transplant glomerulopathy is output from the fully unsupervised Bayesian Belief Network model and sent to the graphical user interface for use by a clinician in pre-operative planning. The fully unsupervised Bayesian Belief Network model is updated using the clinical parameters from the individual patient and the patient-specific probability of transplant glomerulopathy.
Abstract:
A continuous flow chemical metering apparatus includes a measuring vessel adapted to hold a column of fluid, a sensor for determining head pressure and a processor to establish calibration data regarding the relationship between head pressure and a height of the column of fluid in the measuring vessel. A valve is closed when the height of the column of fluid in the measuring vessel reaches a predetermined level, so that chemical drawn by the chemical injection device partially empties the measuring vessel. The processor determines flow rate by monitoring signals from the at least one sensor and performing calculations using the calibration data and current data regarding dynamic changes to head pressure.
Abstract:
A juvenile vehicle seat includes a seat shell having a seat bottom and a back support coupled to the seat bottom. A headrest of the juvenile vehicle seat is coupled to the seat shell for up-and-down movement relative to the seat shell to adjust a height of the headrest above the seat bottom of the seat shell. The juvenile vehicle seat further includes a height-adjustment mechanism arranged to adjust the height of the headrest above the seat bottom. The height-adjustment mechanism is arranged to move between a locked position to prevent up-and-down movement of the headrest and an unlocked position to permit up-and-down movement of the headrest.
Abstract:
An apparatus can comprise a water tower that itself comprises an elevated water reservoir, at least one water conduit coupled between the elevated water reservoir and an external water distribution system, and at least a first water turbine disposed and configured to receive water via the at least one water conduit and to exit water to the external water distribution system. The apparatus can further comprise a generator that operably couples to that water turbine. The water tower can further include a speed-increasing gearbox that operably couples between an output shaft of the first water turbine and that generator. The apparatus optionally includes at least one electrolyzer operably coupled to receive both water and/or electricity sourced by the aforementioned water tower. The apparatus can also include at least one hydrogen-powered generator that receives hydrogen from the electrolyzer and that burns that hydrogen to generate electricity.
Abstract:
An apparatus comprises both a first side and a second side that is opposite the first side. The apparatus includes a plurality of photovoltaic cells disposed on the first side of the substrate and a plurality of microwave antennas disposed on both the first side of the substrate and the second side of the substrate. In addition, the apparatus comprises at least one photonic integrated circuit operably coupled to the substrate and to at least one of the plurality of photovoltaic cells to thereby receive electrical power therefrom. By one approach, the apparatus can further comprise at least one atomic clock supported by the substrate. By one approach, at least some of the aforementioned plurality of microwave antennas that are disposed on the first side of the substrate can comprise an optically transparent portion that serves as both a protective cover and a focusing lens.
Abstract:
Artificially directing a plurality of space-borne natural bodies to a target accretion region, such that gravitational forces amongst the plurality of space-borne natural bodies within the target accretion region produces an agglomerated space-borne body comprised of at least portions of the plurality of space-borne natural bodies. These teachings will accommodate use of a variety of space-borne natural bodies including asteroids, comets, and moons.
Abstract:
An embodiment of the invention provides a method for determining a patient-specific probability of disease. The method collects clinical parameters from a plurality of patients to create a training database. A fully unsupervised Bayesian Belief Network model is created using data from the training database; and, the fully unsupervised Bayesian Belief Network is validated. Clinical parameters are collected from an individual patient; and, such clinical parameters are input into the fully unsupervised Bayesian Belief Network model via a graphical user interface. The patient-specific probability of the healing rate of an acute traumatic wound is output from the fully unsupervised Bayesian Belief Network model and sent to the graphical user interface for use by a clinician in pre-operative planning. The fully unsupervised Bayesian Belief Network model is updated using the clinical parameters from the individual patient and the patient-specific probability of the healing rate of an acute traumatic wound.
Abstract:
Artificially directing a plurality of space-borne natural bodies to a target accretion region, such that gravitational forces amongst the plurality of space-borne natural bodies within the target accretion region produces an agglomerated space-borne body comprised of at least portions of the plurality of space-borne natural bodies. These teachings will accommodate use of a variety of space-borne natural bodies including asteroids, comets, and moons.