摘要:
System and method for providing an electrical fuse having a p-n junction diode. A preferred embodiment comprises a cathode, an anode, and one or more links formed between the cathode and the anode. The cathode and the portion of the cathode adjoining the link are doped with a first impurity, preferably a p-type impurity. The anode and the portion of the link adjoining the anode are doped with a second impurity, preferably an n-type impurity. The junction of the first impurity and the second impurity in the link forms a p-n junction diode. A conductive layer, such as a silicide layer, is formed over the p-n junction diodes. In an alternative embodiment, a plurality of p-n junction diodes may be formed in each link. One or more contacts may be formed to provide electrical contact to the cathode and the anode.
摘要:
MOSFET gate structures comprising multiple width offset spacers are provided. A first and a second gate structure are formed on a semiconductor substrate. A pair of first offset spacers are formed adjacent either side of the first gate structure. Each of the first offset spacers comprises a first silicon oxide layer with a first dielectric layer overlying. A pair of second offset spacers are formed adjacent either side of the second gate structure. Each of the second offset spacers comprises a second silicon oxide layer with a second dielectric layer overlying. Ion implanted doped regions are formed in the semiconductor substrate adjacent the first and second offset spacers respectively to form a first and second MOSFET device. A maximum width of each of the first offset spacers is different from that of the second offset spacers. The first silicon oxide layer is thinner than the second silicon oxide layer.
摘要:
According to the present invention, the integrated circuit includes isolation field regions on a semiconductor substrate. Gate dielectrics are formed on a surface of a substrate. Gate electrodes are formed on the gate dielectrics. A photo resist is formed covering the active regions. Dummy patterns are selectively etched. A dummy substrate is selectively etched. The photo resist is then removed. A pair of spacers is formed along opposite sidewalls of the gate electrode and the gate dielectric. The source and drain are formed on the surface of said substrate and on opposite sides of the gate. Silicide is formed on the gate electrode, source, and drain. A layer of inter-level dielectric is then formed. A contact opening and metal wiring are then formed.
摘要:
A programming method for fuse cells. A core circuit is applied with a first power voltage. The fuse cell includes an electrical fuse element connected to a common node, and a driver device connected between the electrical fuse element and a ground node. The ground node has a ground voltage. The fuse cell has a control gate for controlling current through the electrical fuse element. In program mode, a second power voltage is applied to the common node, a first control voltage is applied to the control gate of a selected fuse cell and a second control voltage is applied to the control gate of an unselected fuse cell. In read mode, the first power voltage is applied to the common node. The second power voltage exceeds the first power voltage. The second control voltage exceeds the ground voltage. The second control voltage is also lower than the first control voltage.
摘要:
A fuse comprises a silicide element disposed above a substrate, a first terminal contact coupled to a first end of the silicide element, and a first metal line disposed above the silicide element and coupled to the first terminal contact. The fuse further comprises a plurality of second terminal contacts coupled to a second end of the silicide element, and a second metal line disposed above the silicide element and coupled to the plurality of second terminal contacts. The silicide element has a sufficient width that a programming potential applied across the first and second metal lines causes a discontinuity in the first terminal contact.
摘要:
A fuse device and method for fabricating the fuse device is disclosed. An exemplary fuse device includes a first contact and a second contact coupled with a metal-semiconductor alloy layer, wherein the metal-semiconductor alloy layer extends continuously between the first contact and the second contact. The metal-semiconductor alloy layer is disposed over an epitaxial layer that is disposed over a fin structure of a substrate.
摘要:
A fuse device and method for fabricating the fuse device is disclosed. An exemplary fuse device includes a first contact and a second contact coupled with a metal-semiconductor alloy layer, wherein the metal-semiconductor alloy layer extends continuously between the first contact and the second contact. The metal-semiconductor alloy layer is disposed over an epitaxial layer that is disposed over a fin structure of a substrate.
摘要:
An electrical fuse and a method of forming the same are presented. A first-layer conductive line is formed over a base material. A via is formed over the first-layer conductive line. The via preferably comprises a barrier layer and a conductive material. A second-layer conductive line is formed over the via. A first external pad is formed coupling to the first-layer conductive line. A second external pad is formed coupling to the second-layer conductive line. The via, the first conductive line and the second conductive line are adapted to be an electrical fuse. The electrical fuse can be burned out by applying a current. The vertical structure of the preferred embodiment is suitable to be formed in any layer.
摘要:
MOSFET gate structures comprising multiple width offset spacers are provided. A first and a second gate structure are formed on a semiconductor substrate. A pair of first offset spacers are formed adjacent either side of the first gate structure. Each of the first offset spacers comprises a first silicon oxide layer with a first dielectric layer overlying. A pair of second offset spacers are formed adjacent either side of the second gate structure. Each of the second offset spacers comprises a second silicon oxide layer with a second dielectric layer overlying. Ion implanted doped regions are formed in the semiconductor substrate adjacent the first and second offset spacers respectively to form a first and second MOSFET device. A maximum width of each of the first offset spacers is different from that of the second offset spacers. The first silicon oxide layer is thinner than the second silicon oxide layer.
摘要:
A fuse comprises a silicide element disposed above a substrate, a first terminal contact coupled to a first end of the silicide element, and a first metal line disposed above the silicide element and coupled to the first terminal contact. The fuse further comprises a plurality of second terminal contacts coupled to a second end of the silicide element, and a second metal line disposed above the silicide element and coupled to the plurality of second terminal contacts. The silicide element has a sufficient width that a programming potential applied across the first and second metal lines causes a discontinuity in the first terminal contact.