Abstract:
A method of assembling a gas turbine engine includes setting a build clearance at assembly in response to a running tip clearance defined with a cooled cooling air. A method of operating a gas turbine engine includes supplying a cooled cooling air to a high pressure turbine in response to an engine rotor speed.
Abstract:
A blade outer air seal support includes, at least one arc body having a first portion and a second portion, a blade outer air seal mounting region defined at least partially between the first portion and the second portion, and an interface feature interfacing the first portion and the second portion. The interface feature is configured such that axially aligned forces are communicated between the first and second portions through the interface feature, bypassing the blade outer air seal mounting region.
Abstract:
A rotor assembly for a gas turbine engine includes a rotor disc having an axially extending rotor disc arm and a plurality of rotor blades extending radially outwardly from the rotor disc. A cover plate is located at an axial face of the rotor disc and at least partially retained at a rotor disc arm. The rotor disc and cover plate define a rotor cavity. A plurality of airflow openings extend into the cavity to allow a flow of air into the rotor cavity to thermally condition the rotor disc and the cover plate at the rotor cavity.
Abstract:
A rotor disk is provided. The rotor disk may comprise a disk lug and a trench. The disk lug may be fixed to a distal surface of the rotor disk. The trench may be disposed on a surface of the disk lug. The trench may extend radially inwards from a distal surface of the disk lug. The trench may be configured to at least partially define a flow path by which cooling air may reach a distal surface of the disk lug in order to provide disk lug cooling.
Abstract:
A debris separator for a gas turbine engine component includes a first body section along an axis, the first body section comprising a first orifice, a neck section adjacent to the first body section along the axis, and a second body section along the axis adjacent to the neck region, the second body section forming an exit along the axis.
Abstract:
A debris separator for a gas turbine engine component includes a first body section along an axis, the first body section comprising a first orifice, a neck section adjacent to the first body section along the axis, and a second body section along the axis adjacent to the neck region, the second body section forming an exit along the axis.
Abstract:
A gas turbine engine includes an engine static structure that provides a flow path. A metering hole is provided in the engine static structure. A strainer is arranged over the metering hole. The strainer includes multiple holes that have a total area that is greater than a metering hole area.
Abstract:
A chamfered stator vane rail is provided. The chamfered stator vane rail may comprise a forward rail and an aft rail axially opposite the forward rail. The aft rail may comprise a leading edge and a trailing edge located axially opposite and aft of the leading edge. The aft rail may comprise a chamfered edge on a radially outer surface. The chamfered edge may be oriented at an angle relative to an axis.
Abstract:
A seal assembly includes a seal arc segment that defines radially inner and outer sides with the radially outer side including radially-extending sidewalls. A radially inner surface joins the radially-extending sidewalls. The radially-extending sidewalls and the radially inner surface define a pocket. A rail shield has radially-extending walls lines the radially-extending sidewalls.
Abstract:
A gas turbine engine rotor assembly includes a rotor disk with a slot. A rotor blade has a root supported within the slot. A heat shield is arranged in a cavity in the slot between the root and the rotor disk. An axial retention feature is configured to axially maintain the heat shield within the slot.