Abstract:
A method of tailoring a combustor flow for a gas turbine engine includes controlling an airflow into a swirler to be generally uniform and controlling an airflow into a quench zone to provide a desired pattern factor.
Abstract:
Combustor panels including panel bodies with first and second sides, a pin array extending from the first side, wherein each pin extends a first height, has a pin diameter, and is separated from adjacent pins by a pin array separation distance. A structural protrusion extends from the first side. No pins of the pin array are located within a flashing distance that is equal to a protrusion separation distance plus half of the pin diameter, wherein a location of the pin is measured from a center point of the pin to a closest point on the exterior surface of the structural protrusion. At least one pin array extension is integrally formed with the structural protrusion, the pin array extension extending along the first side to a position that replaces a pin of the pin array that would be within the flashing distance.
Abstract:
Combustor panels for use in gas turbine engine combustors having a panel body having a peripheral rail around a periphery of the panel body, a first boss formed on the panel body and surrounding a first aperture that passes through the panel body, and a first webbing that extends from the peripheral rail toward the first boss. A first annular channel is formed between the first webbing and the first boss and surrounds the first boss and a first web pocket is formed within the first webbing between the peripheral rail and the first boss and defines a local extension of the first annular channel extending from the first boss to the peripheral rail.
Abstract:
A combustor liner grommet is disclosed. The grommet may include a peripheral wall defining a hole in a combustor liner and further including at least one cooling air flow channel. The cooling air flow channel in the grommet wall may be a slot or a hole. The channel may increase cooling flow to the grommet and the combustor liner around the grommet to prevent cracking from heat stress.
Abstract:
A combustor panel an increased cooling holes provided at at least one of a pair of circumferential edges, a leading edge, a trailing edge or a hole circumference. The increase may be defined as a reduction in spacing or an increase in density. In another feature, holes at the circumferential edges may extend outwardly to an outlet in alignment with rails.
Abstract:
A fuel injection system for a gas turbine engine can be used to ensure successful transition in all conditions, while avoiding the possibility of steady state, or increasing power mode, operations with an insufficiently filled secondary fuel line. This may be accomplished by altering a pressure in a secondary fuel line. The present disclosure allows for the elimination of individual fuel injector valves, which may reduce the total complexity and number of parts of the fuel injection system.
Abstract:
A combustor a gas turbine engine includes an axial fuel injection system in communication with a combustion chamber, the axial fuel injection system operable to supply between about 10%-35% of a combustion airflow. A radial fuel injection system communicates with the combustion chamber downstream of the axial fuel injection system, where the radial fuel injection system is operable to supply between about 30%-60% of the combustion airflow. A multiple of dilution holes are in communication with a combustion chamber downstream of said radial fuel injection system, where the multiple of dilution holes are operable to supply between about 5%-20% of the combustion airflow.
Abstract:
A method of tailoring a combustor flow for a gas turbine engine includes controlling an airflow into a swirler to be generally uniform and controlling an airflow into a quench zone to provide a desired pattern factor.
Abstract:
A combustor a gas turbine engine includes an axial fuel injection system in communication with a combustion chamber, the axial fuel injection system operable to supply between about 10%-35% of a combustion airflow. A radial fuel injection system communicates with the combustion chamber downstream of the axial fuel injection system, where the radial fuel injection system is operable to supply between about 30%-60% of the combustion airflow. A multiple of dilution holes are in communication with a combustion chamber downstream of said radial fuel injection system, where the multiple of dilution holes are operable to supply between about 5%-20% of the combustion airflow.
Abstract:
A liner associated with an engine of an aircraft is described. The liner includes a panel and an array of projections configured to enhance a cooling of the panel and distributed on at least part of a first side of the panel that corresponds to a cold side of the panel.