Abstract:
A hybrid electric propulsion system includes a gas turbine engine having at least one compressor section and at least one turbine section operably coupled to a shaft. The hybrid electric propulsion system includes an electric motor configured to augment rotational power of the shaft of the gas turbine engine. A controller is operable to determine an estimate of hybrid electric propulsion system parameters based on a composite system model and sensor data, determine a model predictive control state and a prediction based on the hybrid electric propulsion system parameters and the composite system model, determine a model predictive control optimization for a plurality of hybrid electric system control effectors based on the model predictive control state and the prediction using a plurality of reduced-order partitions of the composite system model, and actuate the hybrid electric system control effectors based on the model predictive control optimization.
Abstract:
A hybrid electric propulsion system includes a gas turbine engine having at least one compressor section and at least one turbine section operably coupled to a shaft. The hybrid electric propulsion system includes an electric motor configured to augment rotational power of the shaft of the gas turbine engine. A controller is operable to determine an estimate of hybrid electric propulsion system parameters based on a composite system model and sensor data, determine a model predictive control state and a prediction based on the hybrid electric propulsion system parameters and the composite system model, determine a model predictive control optimization for a plurality of hybrid electric system control effectors based on the model predictive control state and the prediction using a plurality of reduced-order partitions of the composite system model, and actuate the hybrid electric system control effectors based on the model predictive control optimization.
Abstract:
A system for controlling a plurality of hydraulic effectors operably connected to an engine to control engine parameters. The system also includes a plurality of sensors operably connected to measure a state or parameter of each effector, a pump configured to supply fluid to the plurality of effectors, and a controller operably connected to the plurality of sensors, the plurality of effectors, and the pump. The controller executes a method for an adaptive model-based control for controlling each effector, The method includes receiving a request indicative of a desired state for each effector, receiving a weighting associated each request, obtaining information about a current state of each effector, and updating an adaptive model based control (MBC) based upon the information. The method also includes generating a control command for an effector based upon the adaptive MBC and commanding the effector based upon the control command.
Abstract:
A control system for a gas turbine engine, a method for controlling a gas turbine engine, and a gas turbine engine are disclosed. The control system may include a hybrid model predictive control (HMPC) module, the HMPC module receiving power goals and operability limits and determining a multi-variable control command for the gas turbine engine, the multi-variable control command determined using the power goals, the operability limits, actuator goals, sensor signals, and synthesis signals. The control system may further include system sensors for determining the sensor signals and a non-linear engine model for estimating corrected speed signals and synthesis signals using the sensor signals, the synthesis signals including an estimated stall margin remaining. The control system may further include a goal generation module for determining actuator goals for the HMPC module using the corrected speed signals and an actuator for controlling the gas turbine engine based on the multivariable control command.
Abstract:
A control system for a gas turbine engine, a method for controlling a gas turbine engine, and a gas turbine engine are disclosed. The control system may include a hybrid model predictive control (HMPC) module, the HMPC module receiving power goals and operability limits and determining a multi-variable control command for the gas turbine engine, the multi-variable control command determined using the power goals, the operability limits, actuator goals, sensor signals, and synthesis signals. The control system may further include system sensors for determining the sensor signals and a non-linear engine model for estimating corrected speed signals and synthesis signals using the sensor signals, the synthesis signals including an estimated stall margin remaining. The control system may further include a goal generation module for determining actuator goals for the HMPC module using the corrected speed signals and an actuator for controlling the gas turbine engine based on the multivariable control command.