Abstract:
An airfoil for a gas turbine engine includes pressure and suction walls spaced apart from one another and joined at leading and trailing edges to provide an airfoil having an exterior surface that extends in a radial direction to a tip. A tip trench is provided in the tip and wrapping at least a portion of the airfoil from the pressure side wall around the leading edge to the suction side wall. The tip trench is provided by a recess.
Abstract:
A component for a gas turbine engine, according to an exemplary aspect of the present disclosure includes, among other things, a body portion and a cooling circuit disposed inside of the body portion. The cooling circuit includes a first baffle received within a first core cavity that extends inside of the body portion, a second baffle received within a second core cavity that extends inside of the body portion, and a first rib disposed between the first core cavity and the second core cavity. The first baffle is in fluid communication with the second baffle through the first rib.
Abstract:
A gas turbine engine component comprises an airfoil with a suction side and pressure side extending from a leading edge to a trailing edge. There are a plurality of cooling holes adjacent the leading edge, with the cooling holes having a non-circular shape, with a longer dimension and a smaller dimension. The airfoil defines a radial direction from a radially outer end to a radially inner end, and radially outer of the cooling holes spaced toward the radially outer end, which have the longer dimension extending closer to parallel to the radial direction. Radially inner cooling holes closer to the radially inner end having the longer dimension extend to be closer to perpendicular relative to the radial direction compared to the radially outer cooling holes.
Abstract:
A cooling hole for a component includes a meter section and a diffuser section. The diffuser section has a footprint region defined by five sides, a first side of the five sides extending along substantially an entire height of the diffuser section and second and third sides of the five sides meeting in an obtuse angle opposite the first side. A component having the cooling hole and a method of forming the cooling hole are also disclosed.
Abstract:
An airfoil according to an example of the present disclosure includes, among other things, an airfoil body defining a cavity, and a baffle including a baffle body including sidewalls and defining an internal passage for conveying coolant. The baffle body is situated in the cavity such that a majority of external surfaces of the sidewalls abut the cavity.
Abstract:
A component for a gas turbine engine according to an example of the present disclosure includes, among other things, a body including a cold side surface adjacent to a mate face. A plurality of ridges extends from the cold side surface. A seal member abuts the plurality of ridges to define a plurality of cooling passages. The seal member is configured to move between a first position and a second position relative to the plurality of ridges. Each of the plurality of cooling passages includes a first inlet defined at the first position and a second, different inlet defined at the second position. A method of sealing between adjacent components of a gas turbine engine is also disclosed.
Abstract:
A cooling hole for a component includes a meter section and a diffuser section. The diffuser section has a footprint region defined by five sides, a first side of the five sides extending along substantially an entire height of the diffuser section and second and third sides of the five sides meeting in an obtuse angle opposite the first side. A component having the cooling hole and a method of forming the cooling hole are also disclosed.
Abstract:
A gas turbine engine component has first and second components each having a platform with an upper surface and a lower surface and with a plurality of side faces extending between the upper and lower surfaces. The platforms are arranged adjacent to one another such that one side face of the platform faces a mating side face of an adjacent platform. At least one cooling hole is formed within the platform and has an inlet to receive a cooling flow and an outlet at least at one of the side faces. The at least one cooling hole increases in size in a direction toward the outlet. A method of cooling a gas turbine engine is also disclosed.
Abstract:
A method of manufacturing a component that includes providing a core structure, casting a component about the core structure, removing a first portion of the core structure from the cast component, and leaving a second portion of the core structure in the cast component to provide a reduced cross-section in the cast component.
Abstract:
An airfoil for a gas turbine engine includes pressure and suction walls spaced apart from one another and joined at leading and trailing edges to provide an airfoil having an exterior surface that extends in a radial direction to a tip. A tip trench is provided in the tip and wrapping at least a portion of the airfoil from the pressure side wall around the leading edge to the suction side wall. The tip trench is provided by a recess.