Abstract:
A gas turbine engine includes a nacelle defining a centerline axis and an annular splitter radially inward from the nacelle. A spinner is radially inward of the nacelle forward of a compressor section. A fan blade extends from a fan blade platform. A distance X is the axial distance from a first point to a second point, wherein the first point is defined on a leading edge of the annular splitter and the second point is defined on a leading edge of the fan blade where the fan blade meets the fan blade platform. A distance H is the radial distance from the first point to the second point. The relative position of the first point and the second point is governed by the ratio of X/H≧1.5 for reducing foreign object debris (FOD) intake into the compressor section.
Abstract:
A nacelle for a turbofan propulsion system that extends along a centerline includes a forward cowling and an aft cowling. To improve the fit of a turbofan propulsion system in the space between the wing and ground of a fixed-wing aircraft, the aft cowling of the nacelle is modified. The aft cowling has a non-circular cross-sectional geometry disposed in a plane substantially perpendicular to the centerline. The non-circular cross-sectional geometry includes a radially recessed section disposed between first and second curved sections. The first and the second curved sections each have a radius that is greater than a radial distance between the centerline and a center point of the radially recessed section.
Abstract:
According to an example embodiment, a gas turbine engine assembly includes, among other things, a fan section including a fan, the fan including a plurality of fan blades, a diameter of the fan having a dimension D that is based on a dimension of the fan blades, each fan blade having a leading edge, and a forward most portion on the leading edges of the fan blades in a first reference plane, a turbine section including a high pressure turbine and a low pressure turbine, the low pressure turbine driving the fan, a nacelle including an inlet portion forward of the fan, a forward edge on the inlet portion in a second reference plane, and a length of the inlet portion having a dimension L measured along an engine axis between the first reference plane and the second reference plane. A dimensional relationship of L/D is no more than 0.45.
Abstract:
According to an example embodiment, a gas turbine engine assembly includes, among other things, a fan section including a fan, the fan including a plurality of fan blades, a diameter of the fan having a dimension D that is based on a dimension of the fan blades, each fan blade having a leading edge, and a forward most portion on the leading edges of the fan blades in a first reference plane, a geared architecture, a turbine section including a high pressure turbine and a low pressure turbine, the low pressure turbine driving the fan through the geared architecture, a nacelle surrounding the fan, the nacelle including an inlet portion forward of the fan, a forward edge on the inlet portion in a second reference plane, and a length of the inlet portion having a dimension L measured along an engine axis between the first reference plane and the second reference plane. A dimensional relationship of L/D is between 0.20 and 0.40.
Abstract:
A fan nozzle for an aircraft gas turbine engine is comprised of a core engine cowl that is disposed within a fan cowl so that an air flow area is defined therebetween. The core engine cowl and fan cowl are disposed around a horizontal central plane. The fan cowl has a substantially circular shape and is formed of an upper substantially semi-circular portion having a first radius and a lower substantially semi-circular portion having a second radius. The core engine cowl has a substantially circular shape and is formed of an upper substantially semi-circular portion having a third radius and a lower substantially semi-circular portion having a third radius. The upper substantially semi-circular portion of the core engine cowl includes a left arcuate member and a right arcuate member. The second radius is less than the first radius and the third radius is less than the fourth radius.
Abstract:
A propulsion system according to an example of the present disclosure includes, among other things, a geared architecture configured to drive a fan section including a fan, and a turbine section configured to drive the geared architecture. The turbine section has an exit point, and a diameter (Dt) defined as the outer diameter of a last blade airfoil stage in the turbine section at the exit point. A nacelle surrounds a core engine housing. The fan is configured to deliver air into a bypass duct defined between the nacelle and the core engine housing. A core engine exhaust nozzle is downstream of the exit point. A downstream most point of the core engine exhaust nozzle is defined at a distance (Lc or Ln) from the exit point.
Abstract:
According to an example embodiment, a gas turbine engine assembly includes, among other things, a fan section including a fan, the fan including a plurality of fan blades, a diameter of the fan having a dimension D that is based on a dimension of the fan blades, each fan blade having a leading edge, and a forward most portion on the leading edges of the fan blades in a first reference plane, a geared architecture, a turbine section including a high pressure turbine and a low pressure turbine, the low pressure turbine driving the fan through the geared architecture, a nacelle surrounding the fan, the nacelle including an inlet portion forward of the fan, a forward edge on the inlet portion in a second reference plane, and a length of the inlet portion having a dimension L measured along an engine axis between the first reference plane and the second reference plane. A dimensional relationship of L/D is no more than 0.45.
Abstract:
A gas turbine engine assembly according to an example of the present disclosure includes, among other things, a fan including a plurality of fan blades, a diameter of the fan having a dimension D that is based on a dimension of the fan blades, each fan blade having a leading edge, a geared architecture configured to drive the fan, a turbine section configured to drive the geared architecture, a compressor section including a first compressor and a second compressor, and an inlet portion forward of the fan. A length of the inlet portion has a dimension L between a location of the leading edge of at least some of the fan blades and a forward edge on the inlet portion. A dimensional relationship of L/D is between about 0.2 and about 0.45.
Abstract translation:根据本公开的示例的燃气涡轮发动机组件包括除了别的以外的包括多个风扇叶片的风扇,具有基于风扇叶片的尺寸的尺寸D的风扇的直径,每个风扇 具有前缘的叶片,配置成驱动风扇的齿轮架构,构造成驱动齿轮架构的涡轮部分,包括第一压缩机和第二压缩机的压缩机部分以及风扇前部的入口部分。 入口部分的长度在至少一些风扇叶片的前缘的位置与入口部分的前边缘之间具有尺寸L。 L / D的尺寸关系为约0.2至约0.45。
Abstract:
A propulsion system includes a fan, a gear, a turbine configured to drive the gear to, in turn, drive the fan. The turbine has an exit point, and a diameter (Dt) is defined at the exit point. A nacelle surrounds a core engine housing. The fan is configured to deliver air into a bypass duct defined between the nacelle and the core engine housing. A core engine exhaust nozzle is provided downstream of the exit point. A downstream most point of the core engine exhaust nozzle is defined at a distance from the exit point. A ratio of the distance to the diameter is greater than or equal to about 0.90.
Abstract:
A fan assembly for a gas turbine engine includes a fan including a plurality of fan blades. Each fan blade extends radially outwardly from a fan hub to a blade tip. The plurality of blade tips define a fan diameter. A nacelle surrounds the fan and defines a fan inlet upstream of the fan, relative to an airflow direction into the fan. The nacelle has a forwardmost edge defining an inlet length from the forwardmost edge to a leading edge of a fan blade of the plurality of fan blades. A ratio of inlet length to fan diameter is between 0.20 and 0.45. A nacelle inner surface defines a nacelle flowpath. The nacelle flowpath has a convex throat portion and a concave diffusion portion between the throat portion and the leading edge of the fan blade at a bottommost portion of the nacelle.