Abstract:
An assembly is provided for a turbine engine. This turbine engine assembly includes a combustor wall including a first layer vertically connected with a second layer. A first portion of the first layer overlaps and is vertically spaced from the second layer by a cavity. A second portion of the first layer is substantially vertically inline with an adjacent portion of the second layer. The second portion of the first layer at least partially forms a quench aperture vertically through the combustor wall.
Abstract:
A combustor wall is provided for a turbine engine. The combustor wall includes a combustor shell and a combustor heat shield that is attached to the shell. The heat shield includes a first panel and a second panel that sealingly engages the first panel in an overlap joint. A cooling cavity extends between the shell and the heat shield and fluidly couples a plurality of apertures in the shell with a plurality of apertures in the heat shield.
Abstract:
A liner panel is provided for use in a gas turbine engine. The liner panel includes an intermediate rail that extends from a cold side of a liner panel. The liner panel also includes a multiple of heat transfer augmentors, which generally decrease in height with respect to a distance from the intermediate rail.
Abstract:
A combustor wall is provided for a turbine engine. The combustor wall includes a combustor shell and a combustor heat shield that is attached to the shell. The heat shield includes a first panel and a second panel that sealingly engages the first panel in an overlap joint. A cooling cavity extends between the shell and the heat shield and fluidly couples a plurality of apertures in the shell with a plurality of apertures in the heat shield.
Abstract:
A diffuser assembly is provided for a turbine engine. This diffuser assembly includes a. diffuser module with a combustor plenum and a mixing chamber. The diffuser module is configured to receive first and second airflows into the mixing chamber and direct a mixed airflow out of the mixing chamber. The diffuser module includes a mixer configured to mix the first and the second airflows together within the mixing chamber to provide the mixed airflow.
Abstract:
A wall assembly of a combustor for a turbine engine includes a shell and a liner and a sealing interface structure. A cooling cavity is defined between the shell and liner and the sealing interface structure functions to minimize leakage out of the cooling cavity. The sealing interface structure may have a sealing width that is equal to or greater than twice the thickness of the liner and/or may include a chamber located between longitudinal segments of the sealing interface structure that inhibits leakage.
Abstract:
A combustor wall is provided for a turbine engine. The combustor wall includes a combustor shell and a combustor heat shield that is attached to the shell. The heat shield includes a first panel and a second panel that sealingly engages the first panel in an overlap joint. A cooling cavity extends between the shell and the heat shield and fluidly couples a plurality of apertures in the shell with a plurality of apertures in the heat shield.
Abstract:
A diffuser assembly is provided for a turbine engine. This diffuser assembly includes a diffuser module with a combustor plenum and a mixing chamber. The diffuser module is configured to receive first and second airflows into the mixing chamber and direct a mixed airflow out of the mixing chamber. The diffuser module includes a mixer configured to mix the first and the second airflows together within the mixing chamber to provide the mixed airflow.
Abstract:
A wall assembly of a combustor for a turbine engine includes a shell and a liner and a sealing interface structure. A cooling cavity is defined between the shell and liner and the sealing interface structure functions to minimize leakage out of the cooling cavity. The sealing interface structure may have a sealing width that is equal to or greater than twice the thickness of the liner and/or may include a chamber located between longitudinal segments of the sealing interface structure that inhibits leakage.
Abstract:
A fuel injector guide is provided for a turbine engine combustor. The fuel injector guide includes a tubular base, an annular flange, a plurality of ribs and a flow turbulator. The base extends along an axis between first and second ends. The flange extends radially out from the base at the second end. The ribs are disposed around the base and extend axially out from the flange towards the first end. The flow turbulator is disposed between an adjacent pair of the ribs.